Skip to main content
Mathematics LibreTexts

1.3.4: Order of Operations

  • Page ID
    87275
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1.3.4 Learning Objectives

    • Use the order of operations to evaluate a numerical expression
    • Use a calculator to evaluate a numerical expression

    Grouping Symbols

    Grouping symbols are used to indicate that a particular collection of numbers and meaningful operations is to be grouped together and considered as one number. The grouping symbols commonly used in mathematics are the following:

    ( ), [ ], { }, \(\frac {\text{       }}{\text{       }}\), \(\sqrt {\text{         }}\)

    Parentheses: ( )

    Brackets: [ ]

    Braces: { } 

    Fraction Bar: \(\frac {\text{       }}{\text{       }}\)

    Radical: \(\sqrt {\text{         }}\)

    In a computation in which more than one operation is involved, grouping symbols indicate which operation to perform first. If possible, we perform operations inside grouping symbols first.

    Example 1

    If possible, determine the value of each of the following.

    \(9 + (3 \cdot 8) \nonumber\)

    Solution

    Since 3 and 8 are within parentheses, they are to be combined first.

    \(\begin{array} {rcl} {9 + (3 \cdot 8)} & = & {9 + 24} \\ {} & = & {33} \end{array}\nonumber\)

    Thus,

    \[9 + (3 \cdot 8) = 33 \nonumber\]

    Example 2

    \((10 \div 0) \cdot 6 \nonumber\)

    Solution

    Since \(10 \div 0\) is undefined, this operation is meaningless, and we attach no value to it. We write, "undefined."

    Multiple Grouping Symbols

    When a set of grouping symbols occurs inside another set of grouping symbols, we perform the operations within the innermost set first.

    Example 3

    Determine the value of each of the following.

    \(2 + (8 \cdot 3) - (5 + 6)\nonumber\)

    Solution

    Combine 8 and 3 first, then combine 5 and 6.

    \(\begin{array} {ll} {2 + 24 - 11} & {\text{ Now combine left to right.}} \\ {26 - 11} & {} \\ {15} & {} \end{array}\nonumber\)

    Example 4

    \(10 + [30 - (2 \cdot 9)]\nonumber\)

    Solution

    Combine 2 and 9 since they occur in the innermost set of parentheses.

    \(\begin{array} {ll} {10 + [30 - 18]} & {\text{ Now combine 30 and 18.}} \\ {10 + 12} & {} \\ {22} & {} \end{array}\nonumber\)

    The Order of Operations

    Sometimes there are no grouping symbols indicating which operations to perform first. For example, suppose we wish to find the value of \(3 + 5 \cdot 2\). We could do either of two things:

    Add 3 and 5, then multiply this sum by 2.

    \(\begin{array} {rcl} {3 + 5 \cdot 2} & = & {8 \cdot 2} \\ {} & = & {16} \end{array}\)

    Multiply 5 and 2, then add 3 to this product.

    \(\begin{array} {rcl} {3 + 5 \cdot 2} & = & {3 + 10} \\ {} & = & {13} \end{array}\)

    We now have two different values for one expression. To determine the correct value, we must use the accepted order of operations.

    Order of Operations

    1. Perform all operations inside grouping symbols, beginning with the innermost set, in the order 2, 3, 4 described below,
    2. Perform all exponential and root operations.
    3. Perform all multiplications and divisions, moving left to right.
    4. Perform all additions and subtractions, moving left to right.

    Example 5

    Determine the value of each of the following.

    \(\begin{array} {ll} {21 + 3 \cdot 12} & {\text{ Multiply first.}} \\ {21 + 36} & {\text{ Add.}} \\ {57} & {} \end{array}\)

    Example 6

    \(\begin{array} {ll} {(15 - 8) + 5 \cdot (6 + 4).} & {\text{ Simplify inside parentheses first.}} \\ {7 + 5 \cdot 10} & {\text{ Multiply.}} \\ {7 + 50} & {\text{ Add.}} \\ {57} & {} \end{array}\)

    Example 7

    \(\begin{array} {ll} {63 - (4 + 6 \cdot 3) + 76 - 4} & {\text{ Simplify first within the parenthesis by multiplying, then adding.}} \\ {63 - (4 + 18) + 76 - 4} & {} \\ {63 - 22 + 76 - 4} & {\text{ Now perform the additions and subtractions, moving left to right.}} \\ {41 + 76 - 4} & {\text{ Add 41 and 76: 41 + 76 = 117.}} \\ {117 - 4} & {\text{ Subtract 4 from 117: 117 - 4 = 113.}} \\ {113} & {} \end{array}\)

    Example 8

    \(\begin{array} {ll} {7 \cdot 6 - 4^2 + 1^5} & {\text{ Evaluate the exponential forms, moving left to right.}} \\ {7 \cdot 6 - 16 - 1} & {\text{ Multiply 7 and 6: 7 \cdot 6 = 42}} \\ {42 - 16 + 1} & {\text{ Subtract 16 from 42: 42 - 16 = 26}} \\ {26 + 1} & {\text{ Add 26 and 1: 26 + 1 = 27}} \\ {27} & {} \end{array}\)

    Example 9

    \(\begin{array} {ll} {6 \cdot (3^2 + 2^2) + 4^2} & {\text{ Evaluate the exponential forms in the parentheses: } 3^2 = 9 \text{ and } 2^2 = 4} \\ {6 \cdot (9 + 4) + 4^2} & {\text{ Add the 9 and 4 in the parentheses: 9 + 4 = 13}} \\ {6 \cdot (13) + 4^2} & {\text{ Evaluate the exponential form: } 4^2 = 16} \\ {6 \cdot (13) + 16} & {\text{ Multiply 6 and 13: } 6 \cdot 13 = 78} \\ {78 + 16} & {\text{ Add 78 and 16: 78 + 16 = 94}} \\ {94} & {} \end{array}\)

    Example 10

    \(\begin{array} {ll} {\dfrac{6^2 + 2^2}{4^2 + 6 \cdot 2^2} + \dfrac{1^2 + 8^2}{10^2 - 19 \cdot 5}} & {\text{ Recall that the bar is a grouping symbol.}} \\ {} & {\text{ The fraction } \dfrac{}{} \text{ is equivalent to } (6^2 + 2^2) \div (4^2 + 6 \cdot 2^2)} \\ {\dfrac{36 + 4}{16 + 6 \cdot 4} + \dfrac{1 + 64}{100 - 19 \cdot 5}} & {} \\ {\dfrac{36 + 4}{16 + 24} + \dfrac{1 + 64}{100 - 95}} & {} \\ {\dfrac{40}{40} + \dfrac{65}{5}} & {} \\ {1 + 13} & {} \\{14} & {} \end{array}\)


    This page titled 1.3.4: Order of Operations is shared under a CC BY license and was authored, remixed, and/or curated by Leah Griffith, Veronica Holbrook, Johnny Johnson & Nancy Garcia.