6.2.1: Perimeter and Area of Geometric Figures
- Page ID
- 87301
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)6.2.1 Learning Objectives
- Define polygon
- Find the perimeter of a polygon
- Find the areas of common polygons
Polygons
We can make use of conversion skills with denominate numbers to make measurements of geometric figures such as rectangles, triangles, and circles. To make these measurements we need to be familiar with several definitions.
Definition: Polygon
A polygon is a closed plane (flat) figure whose sides are line segments (portions of straight lines).
Polygons




Not polygons




Perimeter
Definition: Perimeter
The perimeter of a polygon is the distance around the polygon.
To find the perimeter of a polygon, we simply add up the lengths of all the sides.
Example 1
Find the perimeter of the rectangle.
Solution
\(\begin{array} {rcl} {\text{Perimeter}} & = & {\text{2 cm + 5 cm + 2 cm + 5 cm}} \\ {} & = & {\text{14 cm}} \end{array}\)
Example 2
Solution
\(\begin{array} {rcr} {\text{Perimeter}} & = & {\text{3.1 mm}} \\ {} & & {\text{4.2 mm}} \\ {} & & {\text{4.3 mm}} \\ {} & & {\text{1.52 mm}} \\ {} & & {\text{5.4 mm}} \\ {} & & {\underline{\text{+ 9.2 mm}}} \\ {} & & {\text{27.72 mm}} \end{array}\)
Example 3
Solution
Our first observation is that three of the dimensions are missing. However, we can determine the missing measurements using the following process. Let A, B, and C represent the missing measurements. Visualize
\(\text{A = 12m - 2m = 10m}\)
\(\text{B = 9m + 1m - 2m = 8m}\)
\(\text{C = 12m - 1m = 11m}\)
\(\begin{array} {rcr} {\text{Perimeter}} & = & {\text{8 m}} \\ {} & & {\text{10 m}} \\ {} & & {\text{2 m}} \\ {} & & {\text{2 m}} \\ {} & & {\text{9 m}} \\ {} & & {\text{11 m}} \\ {} & & {\text{1 m}} \\ {} & & {\underline{\text{+ 1 m}}} \\ {} & & {\text{44 m}} \end{array}\)
Try It Now 1
Find the perimeter of this triangle.
- Answer
-
20 ft
Try It Now 2
Find the perimeter of this polygon.
- Answer
-
46 cm
Try It Now 3
- Answer
-
26.8 m
Try It Now 4
- Answer
-
49.89 mi
Quite often it is necessary to multiply one denominate number by another. To do so, we multiply the number parts together and the unit parts together. For example,
\(\begin{array} {rcl} {\text{8 in} \cdot \text{8 in}} & = & {8 \cdot 8 \cdot \text{in} \cdot \text{in}} \\ {} & = & {64 \text{ in}^2} \end{array}\)
\(\begin{array} {rcl} {\text{4 mm} \cdot \text{4 mm} \cdot \text{4 mm}} & = & {4 \cdot 4 \cdot 4 \cdot \text{mm} \cdot \text{mm} \cdot \text{mm}} \\ {} & = & {64 \text{ mm}^3} \end{array}\)
Sometimes the product of units has a physical meaning. In this section, we will examine the meaning of the products \(\text{(length unit)}^2\) and \(\text{(length unit)}^3\)
The Meaning and Notation for Area
The product \(\text{(length unit)} \cdot \text{(length unit)} = \text{(length unit)}^2\), or, square length unit (sq length unit), can be interpreted physically as the area of a surface.
Area
The area of a surface is the number of square length units contained in the surface.
For example, 3 sq in means that 3 squares, 1 inch on each side, can be placed precisely on some surface. (The squares may have to be cut and rearranged so they match the shape of the surface.)
We will examine the area of the following geometric figures.


Area Formulas
We can determine the areas of these geometric figures using the following formulas.
Figure | Area Formula | Statement | |
![]() |
Triangle | \(A_T = \dfrac{1}{2} \cdot b \cdot h\) | Area of a triangle is one half the base times the height. |
![]() |
Rectangle | \(A_R = l \cdot w\) | Area of a rectangle is the length times the width. |
![]() |
Parallelogram | \(A_P = b \cdot h\) | Area of a parallelogram is base times the height. |
![]() |
Trapezoid | \(A_{Trap} = \dfrac{1}{2} \cdot (b_1 + b_2) \cdot h\) | Area of a trapezoid is one half the sum of the two bases times the height. |
Finding Areas of Some Common Geometric Figures
Example 4
Find the area of the triangle.
Solution
\(\begin{array} {rcl} {A_T} & = & {\dfrac{1}{2} \cdot b \cdot h} \\ {} & = & {\dfrac{1}{2} \cdot 20 \cdot 5 \text{ sq ft}} \\ {} & = & {10 \cdot 6 \text{ sq ft}} \\ {} & = & {60 \text{ sq ft}} \\ {} & = & {60 \text{ ft}^2} \end{array}\)
The area of this triangle is 60 sq ft, which is often written as 60 \(\text{ft}^2\).
Example 5
Find the area of the rectangle.
Solution
Let's first convert 4 ft 2 in to inches. Since we wish to convert to inches, we'll use the unit fraction \(\dfrac{\text{12 in}}{\text{1 ft}}\) since it has inches in the numerator. Then,
\(\begin{array} {rcl} {\text{4 ft}} & = & {\dfrac{\text{4 ft}}{1} \cdot \dfrac{\text{12 in}}{\text{1 ft}}} \\ {} & = & {\dfrac{4 \cancel{\text{ ft}}}{1} \cdot \dfrac{\text{12 in}}{1 \cancel{\text{ ft}}}} \\ {} & = & {\text{48 in}} \end{array}\)
Thus, \(\text{4 ft 2 in = 48 in + 2 in = 50 in}\)
\(\begin{array} {rcl} {A_R} & = & {l \cdot w} \\ {} & = & {\text{50 in} \cdot \text{8 in}} \\ {} & = & {400 \text{ sq in}} \end{array}\)
The area of this rectangle is 400 sq in.
Example 6
Find the area of the parallelogram.
Solution
\(\begin{array} {rcl} {A_P} & = & {b \cdot h} \\ {} & = & {\text{10.3 cm} \cdot \text{6.2 cm}} \\ {} & = & {63.86 \text{ sq cm}} \end{array}\)
The area of this parallelogram is 63.86 sq cm.
Example 7
Find the area of the trapezoid.
Solution
\(\begin{array} {rcl} {A_{Trap}} & = & {\dfrac{1}{2} \cdot (b_1 + b_2) \cdot h} \\ {} & = & {\dfrac{1}{2} \cdot (\text{14.5 mm + 20.4 mm}) \cdot (4.1 \text{ mm})} \\ {} & = & {\dfrac{1}{2} \cdot (\text{34.9 mm}) \cdot (4.1 \text{ mm})} \\ {} & = & {\dfrac{1}{2} \cdot \text{(143.09 sq mm)}} \\ {} & = & {71.545 \text{ sq mm}} \end{array}\)
The area of this trapezoid is 71.545 sq mm.
Try It Now 5
Find the area of each of the following geometric figures.
- Answer
-
36 sq cm
Try It Now 6
Find the area of the rectangle
- Answer
-
37.503 sq mm
Try It Now 7
- Answer
-
13.26 sq in.
Try It Now 8
- Answer
-
367.5 sq mi
Composite Figures
Definition: Composite Figures
A composite figure is a figure made up of two or more geometric figures.
When determining the area of a composite figure it is best to determine what shapes the composite figure is made of first. Once you have determined the shapes, find the area for those individual shapes and add them together.
Example 8
Find the area of the composite figure.
Solution
This figure is made up of two squares and one rectangle. There is a square with 1 cm sides and one with 2 cm sides. The rectangle has a 12 cm side, but to figure out the other side we need to subtract 9 cm\(-\)2 cm \(=\)7 cm.
\(\begin{array} {rcl} {A_{figure}} & = & {l \cdot w + l \cdot w + l \cdot w} \\ {} & = & {1 \text{ cm} \cdot 1 \text{ cm} + 2 \text{ cm} \cdot 2 \text{ cm}+12 \text{ cm} \cdot 7 \text{ cm}} \\ {} & = & {1 \text{ cm}^2+2 \text{ cm}^2+84 \text{ cm}^2} \\ {} & = & {87 \text{sq cm}} \end{array}\)
The area of the composite figure is 87 sq. cm.
Try It Now 9
Find the area of the composite figure.
- Answer
-
This shape is composed of a rectangle and a triangle.
The area of the composite figure is 352 sq in.