Skip to main content
Mathematics LibreTexts

5.2.5: Row Space

  • Page ID
    72216
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The Row Space

    As the columns of \(A^{T}\) are simply the rows of \(A\) we call \(Ra(A^{T})\) the row space of \(A^{T}\). More precisely

    Definition: Row Space

    The row space of the m-by-n matrix A is simply the span of its rows, i.e.,

    \[Ra(A^{T}) \equiv \{A^{T} \textbf{y} | \textbf{y} \in \mathbb{R}^{m}\} \nonumber\]

    This is a subspace of \(\mathbb{R}^n\)

    Let us examine the matrix:

    \[A = \begin{pmatrix} {0}&{1}&{0}&{0}\\ {-1}&{0}&{1}&{0}\\ {0}&{0}&{0}&{1} \end{pmatrix} \nonumber\]

    The row space of this matrix is:

    \[\mathscr{Ra}(A^{T}) = \left \{ y_{1} \begin{pmatrix} {0}\\{1}\\{0}\\{0} \end{pmatrix}+y_{2} \begin{pmatrix} {-1}\\{0}\\{1}\\{0} \end{pmatrix}+y_{3} \begin{pmatrix} {0}\\{0}\\{0}\\{1} \end{pmatrix} | y \in \mathbb{R}^{3} \right \} \nonumber\]

    As these three rows are linearly independent we may go no further. We "recognize" then \(\mathcal{Ra}(A^{T})\) as a three dimensional subspace of \(\mathbb{R}^{4}\)

    Method for Finding the Basis of the Row Space

    Regarding a basis for \(\mathscr{Ra}(A^T)\) we recall that the rows of \(A_{red}\), the row reduced form of the matrix \(A\), are merely linear \(A\) combinations of the rows of \(A\) and hence

    \[\mathscr{Ra}(A^T) = \mathscr{Ra}(A_{red}) \nonumber\]

    This leads immediately to:

    Definition: A Basis for the Row Space

    Suppose \(A\) is m-by-n. The pivot rows of \(A_{red}\) constitute a basis for \(\mathscr{Ra}⁢(A^{T})\).

    With respect to our example,

    \[\left \{ \begin{pmatrix} {0}\\{1}\\{0}\\{0} \end{pmatrix}, \begin{pmatrix} {-1}\\{0}\\{1}\\{0} \end{pmatrix}, \begin{pmatrix} {0}\\{0}\\{0}\\{1} \end{pmatrix} \right \} \nonumber\]

    comprises a basis for \(\mathscr{Ra}⁢(A^{T})\).


    This page titled 5.2.5: Row Space is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.