# 3: Symbolic Logic and Proofs

- Page ID
- 15331

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

Logic is the study of consequence. Given a few mathematical statements or facts, we would like to be able to draw some conclusions. Whenever we find an “answer” in math, we really have a (perhaps hidden) argument. Mathematics is really about proving general statements (like the Intermediate Value Theorem), and this too is done via an argument, usually called a proof. We start with some given conditions, the * premises* of our argument, and from these we find a consequence of interest, our

*.*

*conclusion*

- 3.1: Prelude to Symbolic Logic and Proofs
- The problem is, as you no doubt know from arguing with friends, not all arguments are good arguments. A “bad” argument is one in which the conclusion does not follow from the premises, i.e., the conclusion is not a consequence of the premises. Logic is the study of what makes an argument good or bad. In other words, logic aims to determine in which cases a conclusion is, or is not, a consequence of a set of premises.

- 3.2: Propositional Logic
- A proposition is simply a statement. Propositional logic studies the ways statements can interact with each other. It is important to remember that propositional logic does not really care about the content of the statements. For example, in terms of propositional logic, the claims, “if the moon is made of cheese then basketballs are round,” and “if spiders have eight legs then Sam walks with a limp” are exactly the same. They are both implications.

- 3.3: Proofs
- Anyone who doesn't believe there is creativity in mathematics clearly has not tried to write proofs. Finding a way to convince the world that a particular statement is necessarily true is a mighty undertaking and can often be quite challenging. There is not a guaranteed path to success in the search for proofs. Writing proofs is a bit of an art. Like any art, to be truly great at it, you need some sort of inspiration, as well as some foundational technique.

- 3.S: Symbolic Logic and Proofs (Summary)
- At the most basic level, a statement might combine simpler statements using logical connectives. We often make use of variables, and quantify over those variables. How to resolve the truth or falsity of a statement based on these connectives and quantifiers is what logic is all about. From this, we can decide whether two statements are logically equivalent or if one or more statements (logically) imply another.