# q,t-Kostka Polynomials

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Background

Let $$\Lambda$$ denote the algebra of symmetric functions in a finite or infinite alphabet $$X = \{x_1,x_2,\ldots\}$$ with coefficients in the field of rational functions $$\mathbb{Q}(q,t)$$. Also denote by $$\Lambda_{\mathbb{Z}[q,t]}$$ the algebra of symmetric functions in $$X$$ with coefficients in $$\mathbb{Z}[q,t]$$. Inside the plethystic brackets $$[]$$, we adopt the convention that $$X$$ stands for $$x_1+x_2+\ldots$$. For $$P \in \Lambda$$, $$P[X]$$ means $$P(x_1,x_2,\ldots)$$. We will also let $$X_n$$ denote the finite alphabet $$x_1+x_2+\ldots+x_n$$.

We denote partitions by their French Ferrers diagrams, that is with rows decreasing from bottom to top. For a partition $$\mu$$ of length no greater than $$k$$, denote by $$\mu+1^k$$ the partition obtained by prepending a column of length $$k$$ to the diagram of $$\mu$$.

## Definition of q,t-Kostka Polynomials

For a partition $$\lambda$$, let $$P_{\lambda}(x;q,t)$$ denote the Macdonald polynomial of shape $$\lambda$$ and let $$Q_{\lambda}(x;q,t)$$ denote its dual. Define the integral form $$J_{\lambda}(x;q,t)$$ of these Macdonald polynomials as $J_{\lambda}(x;q,t) = h_{\lambda}(q,t)P_{\lambda}(x;q,t) = h'_{\lambda}(q,t)Q_{\lambda}(x;q,t)$ with $h_{\lambda}(q,t) = \prod_{s \in \lambda}{(1-q^{a_{\lambda}(s)}t^{l_{\mu}(s)+1})}, \;\;\;\; h'_{\lambda}(q,t) = \prod_{s \in \lambda}{1-q^{a_{\lambda}(s)+1}t^{l_{\mu}(s)}}$ where, for a cell $$s \in \lambda$$, $$a_{\lambda}(s)$$ and $$l_{\lambda}(s)$$ represent respectively the arm and leg of s in $$\lambda$$, that is the number of cells of $$\lambda$$ that are respectively strictly east and north of $$s$$.

Macdonald showed that $J_{\mu}[X;q,t] = \sum_{\lambda}{S_{\lambda}[X(1-t)]K_{\lambda\mu}(q,t)}$ for coefficients $$K_{\lambda\mu}(q,t)$$ in $$\mathbb{Q}(q,t)$$. It was conjectured that these coefficients, called the $$q,t$$-Kostka polynomials, are in fact polynomials in $$\mathbb{Z}[q,t]$$.

## Proof of Polynomiality

Let $H_{\mu}[X;q,t] = J_{\mu}[\frac{X}{1-t};q,t].$ We now have direct access to the $$q,t$$-Kostka coefficients because $H_{\mu}[X;q,t] = \sum_{\lambda}{S_{\lambda}[X]K_{\lambda \mu}(q,t)}.$ Also let $H_{\mu}[X;t] = Q_{\mu}[\frac{X}{1-t};t] = \sum_{\lambda}{S_{\lambda}[X]K_{\lambda\mu}(t)}.$

The following theorem is central to Garsia and Zabrocki's proof of the polynomiality of the $$q,t$$-Kostka coefficients.

Theorem: For any linear operator $$V$$ acting on $$\Lambda$$ and $$P \in \Lambda$$ set $\tilde{V}^qP[X] = V^YP[qX+(1-q)Y]|_{Y=X}$ where $$V^Y$$ is simply $$V$$ acting on polynomials in the $$Y$$ variables. This given, if $$G_k = G_k(X,t)$$ is any linear operator on $$\Lambda$$ with the property that $G_kH_{\mu}[X;t] = H_{\mu+1^k}[X;t]$ for all $$\mu$$ of length no greater than $$k$$, then $$\tilde{G_k}^q$$ has the property $\tilde{G_k}^qH_{\mu}[X;q,t] = H_{\mu+1^k}[X;q,t]$ for all $$\mu$$ of length no greater than $$k$$. In particular, the modified Macdonald polynomials $$H_{\mu}[X;q,t]$$ may be obtained from the "Rodriguez" formula: $H_{\mu}[X;q,t] = \tilde{G_{\mu'_1}}^q\tilde{G_{\mu'_2}}^q \cdots \tilde{G_{\mu'_h}}^q \textbf{1}$ where $$\mu'= (\mu'_1,\mu'_2,\ldots,\mu'_h)$$ denotes the conjugate of $$\mu$$.

Given this theorem, the polynomiality of the $$q,t$$-Kostka coefficients follows:

Define the "trivial" operator $$TG_k = TG_k(X;t)$$ by setting for the $$\{H_{\mu}[X;t]\}_{\mu}$$ basis $TG_kH_{\mu}[X;t] = \begin{cases} H_{\mu+1^k}[X;t] & \mbox{if } l(\mu) \leq k \\ 0 & \mbox{otherwise. } \end{cases}$ The Kostka-Foulkes matrix $$K(t) = \|K_{\lambda\mu}(t)\|$$ is the transition matrix between the $$\{H_{\mu}[X;t]\}_{\mu}$$ basis and the Schur functions. Since $$K(t)$$ is unitriangular with entries in $$\mathbb{Z}[t]$$, it follows that its inverse $$H(t) = K(t)^{-1}$$ has entries in $$\mathbb{Z}[t]$$. This implies that $$TG_kS_{\lambda}[X]$$ is an integral linear combination of Schur functions. Since the operator $$TG_k$$ acts integrally on the Schur basis, the desired result $$K_{\lambda\mu}(q,t) \in \mathbb{Z}[q,t]$$ is an immediate consequence of the Rodriguez formula in the above theorem with $$G = TG$$.

## References

Adriano M. Garsia and Mike Zabrocki, Polynomiality of the q,t-Kostka Revisited. Algebraic Combinatorics and Computer Science, 2001, pp 473-491.

## Contributors

• Roger Tian (UC Davis)

q,t-Kostka Polynomials is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.