$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.4E: Infinite Limits EXERCISES

[ "article:topic" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

2.4: Infinite Limit Exercises

In the following exercises, find the limit.

100) $$lim_{x→1}\frac{x^3−1}{x^2−1}$$

101) $$lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}$$

$$lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}=\frac{\frac{1}{2}+\frac{3}{2}−2}{1−1}=\frac{0}{0}; then, lim_{x→ 1/2}\frac{2x^2+3x−2}{2x−1}=lim_{x→1/2}frac{(2x−1)(x+2)}{2x−1}=\frac{5}{2}$$

102) $$lim_{x→−3}\frac{\sqrt{x+4}−1}{x+3}$$

103) $$lim_{x→−2^−}\frac{2x^2+7x−4}{x^2+x−2}$$

104) $$lim_{x→−2^+}\frac{2x^2+7x−4}{x^2+x−2}$$
105) $$lim_{x→1^−}\frac{2x^2+7x−4}{x^2+x−2}$$
106) $$lim_{x→1^+}\frac{2x^2+7x−4}{x^2+x−2}$$