Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

2.4E: Infinite Limits EXERCISES

  • Page ID
    10236
  • [ "article:topic" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    2.4: Infinite Limit Exercises 

    In the following exercises, find the limit.

    100) \(lim_{x→1}\frac{x^3−1}{x^2−1}\)

    101) \(lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}\)

    Answer:
     \(lim_{x→1/2}\frac{2x^2+3x−2}{2x−1}=\frac{\frac{1}{2}+\frac{3}{2}−2}{1−1}=\frac{0}{0}; then, lim_{x→ 1/2}\frac{2x^2+3x−2}{2x−1}=lim_{x→1/2}frac{(2x−1)(x+2)}{2x−1}=\frac{5}{2}\)

    102) \(lim_{x→−3}\frac{\sqrt{x+4}−1}{x+3}\)

    103) \(lim_{x→−2^−}\frac{2x^2+7x−4}{x^2+x−2}\)

    Answer:
    −∞

    104) \(lim_{x→−2^+}\frac{2x^2+7x−4}{x^2+x−2}\)

    105) \(lim_{x→1^−}\frac{2x^2+7x−4}{x^2+x−2}\)

    Answer:
    −∞

    106) \(lim_{x→1^+}\frac{2x^2+7x−4}{x^2+x−2}\)