$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.3: Properties of Sets

[ "article:topic", "authorname:thangarajahp" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Let $$A, B,$$ and $$C$$ be sets and $$U$$ be the universal set. Then:

#### Commutativity

1. $$A \cup B =B \cup A$$ and

$$A \cap B= B \cap A$$

Proof:

Let $$x \in A \cup B$$. Then $$x \in A$$ or $$x \in B$$. Which implies $$x \in B$$ or $$x \in A$$. Hence $$x \in B \cup A$$. Thus $$A \cup B \subseteq B \cup A$$. Similarly, we can show that $$B \cup A \subseteq A \cup B$$. Therefore, $$A \cup B =B \cup A$$.

Let $$x \in A \cap B$$. Then $$x \in A$$ and $$x \in B$$. Which implies $$x \in B$$ and $$x \in A$$. Hence $$x \in B \cap A$$. Thus $$A \cap B \subseteq B \cap A$$. Similarly, we can show that $$B \cap A \subseteq A \cap B$$. Therefore, $$A \cap B =B \cap A$$.

#### Distributivity

2. $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ and $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

We have illustrated using a Venn diagram:

Example $$\PageIndex{1}$$:

Consider $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$:

#### De Morgan's Laws

3. $$(A \cup B)^c = A^c \cap B^c$$ and $$(A \cap B)^c = A^c \cup B^c$$

Example $$\PageIndex{2}$$:

Consider $$(A \cup B)^c = A^c \cap B^c$$:

#### Relative Complements

4. $$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$ and $$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

Example $$\PageIndex{3}$$:

Consider $$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$:

#### Others

5. $$A \cap A=A$$ and $$A \cup A=A$$.

6. $$A \cap \emptyset= \emptyset$$ and $$A \cup \emptyset=A$$.

7. $$A \cap A^c= \emptyset$$ and $$A \cup A^c= U$$.

8. $$(A^c)^C=A$$.

9. $$\emptyset^c=U$$.

10. $$U^c=\emptyset$$.