$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 1.0.E Exercises

[ "stage:draft", "article:topic" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

### TERMS and Concepts

• Explain the following laws within the Ideal Gas Law

### Exercise $$\PageIndex{1}$$ Euler number

Consider the function $$f(x)=\left(1+\dfrac{1}{x}\right)^x$$. Make a table showing $$f(x)$$ for $$x=1,2,3, .....$$ . Round your solutions to five decimal places. What can you say  about the value of the  function $$f(x)$$ as $$x$$ increases indefinitely?

$$\lim_{x \to \infty}\left(1+\dfrac{1}{x}\right)^x=2.7183=e.$$