Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

1.E Exercises

  • Page ID

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)


    Exercise \(\PageIndex{1}\) Euler number 

    Consider the function \(f(x)=(1+\dfrac{1}{x})^x\). Make a table showing the values of f for \(x=−0.01,−0.001,−0.0001,−0.00001\) and for \(x=0.01,0.001,0.0001,0.00001\). Round your solutions to five decimal places.

    \(x\) \(f(x)\) \(x)\ \(f(x)\)
    -0.01 a. 0.01 e.
    -0.001 b. 0.001 f.
    -0.0001 c. 0.0001 g.
    -0.00001 d. 0.00001 h.
    1. What does the table of values in the preceding exercise indicate about the function \(f(x)=(1+x)^{1/x}\)?

    \(\lim_{x \to 0}(1+x)^{1/x}=2.7183\)




    Exercise \(\PageIndex{2}\)

    Add exercises text here. For the automatic number to work, you need to add the "AutoNum" template (preferably at the end) to the page.


    Add answer text here and it will automatically be hidden if you have a "AutoNum" template active on the page.




    UndefinedNameError: reference to undefined name 'CurrentURL' (click for details)
        at (Template:Custom/Views/ContentFooter), /content/body/div[1]/pre, line 3, column 43
        at (LibreTexts/Mount_Royal_University/MATH_1200_–_Calculus_for_Scientists_I/1:_Limit__and_Continuity_of_Functions/1.E__Exercises), /content/body/div/pre, line 2, column 9