$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.3 Arithmetic of inequality

[ "stage:draft", "article:topic", "authorname:thangarajahp", "license:ccbyncsa", "showtoc:yes" ]

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Definition

Let $$a, b\in \mathbb{Z}$$. Then

1. $$a< b$$ provided $$b=a + k$$, for some $$k \in \mathbb{Z_+}$$.
2. $$a> b$$ provided $$a=b + h$$, for some $$h \in \mathbb{Z_+}$$.

Let $$a, b\in \mathbb{Z}$$.

1.  If  $$a< b$$  then  $$a+c< b+c$$, $$\forall c \in \mathbb{Z}$$.
2.  If  $$a< b$$  then  $$ac< bc$$,$$\forall c \in \mathbb{Z_+}$$.
3.  If  $$a< b$$  and   $$c< d$$  then   $$a+c< b+d$$.