Skip to main content
Mathematics LibreTexts

6.4: Add, Subtract, and Multiply Radical Expressions

  • Page ID
    66350
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    By the end of this section, you will be able to:

    • Add and subtract radical expressions
    • Multiply radical expressions
    • Use polynomial multiplication to multiply radical expressions
    Be Prepared

    Before you get started, take this readiness quiz.

    1. Add \(3x^{2}+9x−5−(x^{2}−2x+3)\).
    2. Simplify \((2+a)(4−a)\).
    3. Simplify \((9−5y)^{2}\).

    Add and Subtract Radical Expressions

    Adding radical expressions with the same index and the same radicand is just like adding like terms. We call radicals with the same index and the same radicand like radicals to remind us they work the same as like terms.

    Definition \(\PageIndex{1}\)

    Like radicals are radical expressions with the same index and the same radicand.

    We add and subtract like radicals in the same way we add and subtract like terms. We know that \(3x+8x\) is \(11x\). Similarly we add \(3 \sqrt{x}+8 \sqrt{x}\) and the result is \(11 \sqrt{x}\).

    Let's think about adding like terms with variables as we do the next few examples. When we have like radicals, we just add or subtract the coefficients. When the radicals are not like, we cannot combine the terms.

    Example \(\PageIndex{2}\)

    Simplify \(2 \sqrt{2}-7 \sqrt{2}\).

    Solution
      \(\quad 2 \sqrt{2}-7 \sqrt{2}\)

    Since the radicals are like, we subtract the coefficients.

    \(=-5\sqrt {2}\)
    Try It \(\PageIndex{3}\)

    Simplify \(8 \sqrt{2}-9 \sqrt{2}\).

    Answer

    \(-\sqrt{2}\)

    Try It \(\PageIndex{4}\)

    Simplify \(5 \sqrt{3}-9 \sqrt{3}\).

    Answer

    \(-4 \sqrt{3}\)

    For radicals to be like, they must have the same index and radicand. When the radicands contain more than one variable, as long as all the variables and their exponents are identical, the radicands are the same.

    Example \(\PageIndex{5}\)

    Simplify \(2 \sqrt{5 n}-6 \sqrt{5 n}+4 \sqrt{5 n}\).

    Solution
      \(\quad 2 \sqrt{5 n}-6 \sqrt{5 n}+4 \sqrt{5 n}\)
    Since the radicals are like, we combine them. \(=0 \sqrt{5 n}\)
    Simplify. \(=0\)
    Try It \(\PageIndex{6}\)

    Simplify \(\sqrt{7 x}-7 \sqrt{7 x}+4 \sqrt{7 x}\).

    Answer

    \(-2 \sqrt{7 x}\)

    Try It \(\PageIndex{7}\)

    Simplify \(4 \sqrt{3 y}-7 \sqrt{3 y}+2 \sqrt{3 y}\).

    Answer

    \(-\sqrt{3 y}\)

    Remember that we always simplify radicals by removing the largest factor from the radicand that is a power of the index. Once each radical is simplified, we can then decide if they are like radicals.

    Example \(\PageIndex{8}\)

    Simplify \(\sqrt{20}+3 \sqrt{5}\).

    Solution
      \(\quad\sqrt{20}+3 \sqrt{5}\)
    Simplify the radicals, when possible. \(=\sqrt{4} \cdot \sqrt{5}+3 \sqrt{5}\)
    Simplify.

    \(=2 \sqrt{5}+3 \sqrt{5}\)

    Combine the like radicals. \(=5 \sqrt{5}\)
    Try It \(\PageIndex{9}\)

    Simplify \(\sqrt{18}+6 \sqrt{2}\).

    Answer

    \(9 \sqrt{2}\)

    Try It \(\PageIndex{10}\)

    Simplify \(\sqrt{27}+4 \sqrt{3}\).

    Answer

    \(7 \sqrt{3}\)

    In the next example, we will remove both constant and variable factors from the radicals. Now that we have practiced taking both the even and odd roots of variables, it is common practice at this point for us to assume all variables are greater than or equal to zero so that absolute values are not needed. We will use this assumption thoughout the rest of this chapter.

    Example \(\PageIndex{11}\)

    Simplify \(9 \sqrt{50 m^{2}}-6 \sqrt{48 m^{2}}\).

    Solution
     

    \(\quad 9 \sqrt{50 m^{2}}-6 \sqrt{48 m^{2}}\)

    Simplify the radicals.

    \(=9 \sqrt{25 m^{2}}\cdot \sqrt{2}-6 \sqrt{16 m^{2}}\cdot\sqrt{3}\)

    Simplify, \(=9\cdot 5 m\cdot \sqrt{2}-6\cdot 4m\cdot\sqrt{3}\)
    The radicals are not like and so cannot be combined. \(=45m \sqrt{2}-24m\sqrt{3}\)
    Try It \(\PageIndex{12}\)

    Simplify \(\sqrt{32 m^{7}}-\sqrt{50 m^{7}}\).

    Answer

    \(-m^{3} \sqrt{2 m}\)

    Try It \(\PageIndex{13}\)

    Simplify \(\sqrt{27 p^{3}}-\sqrt{48 p^{3}}\).

    Answer

    \(-p \sqrt{3 p}\)

    Multiply Radical Expressions

    We have used the Product Property of Roots to simplify square roots by removing the perfect square factors. We can use the Product Property of Roots ‘in reverse’ to multiply square roots. Remember, we assume all variables are greater than or equal to zero.

    We will rewrite the Product Property of Roots so we see both ways together.

    Product Property of Roots

    For any real numbers, \(\sqrt{a}\) and \(\sqrt{b}\), we have

    \(\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \quad \text { and } \quad \sqrt{a} \cdot \sqrt{b}=\sqrt{a b}.\)

    When we multiply two radicals, they must have the same index. Once we multiply the radicals, we then look for factors that are a power of the index and simplify the radical whenever possible.

    Multiplying radicals with coefficients is much like multiplying variables with coefficients. To multiply \(4x⋅3y\) we multiply the coefficients together and then the variables. The result is \(12xy\). Keep this in mind as you do these examples.

    Example \(\PageIndex{14}\)

    Simplify \((6 \sqrt{2})(3 \sqrt{10})\).

    Solution
      \(\quad(6 \sqrt{2})(3 \sqrt{10})\)
    Multiply using the Product Property. \(=18\sqrt{20}\)
    Simplify the radical. \(=18 \sqrt{4} \cdot \sqrt{5}\)
    Simplify. \(=18 \cdot 2 \cdot \sqrt{5}\)
    Simplify. \(=36 \sqrt{5}\)
     
    Try It \(\PageIndex{15}\)

    Simplify \((3 \sqrt{2})(2 \sqrt{30})\).

    Answer

    \(12 \sqrt{15}\)

    Try It \(\PageIndex{16}\)

    Simplify \((3 \sqrt{3})(3 \sqrt{6})\).

    Answer

    \(27 \sqrt{2}\)

    We follow the same procedures when there are variables in the radicands.

    Example \(\PageIndex{17}\)

    Simplify \(\left(10 \sqrt{6 p^{3}}\right)(4 \sqrt{3 p})\).

    Solution
      \(\quad\left(10 \sqrt{6 p^{3}}\right)(4 \sqrt{3 p})\)
    Multiply. \(=40 \sqrt{18 p^{4}}\)
    Simplify the radical. \(=40 \sqrt{9 p^{4}} \cdot \sqrt{2}\)
    Simplify. \(=40 \cdot 3 p^{2} \cdot \sqrt{2}\)
    Simplify. \(=120 p^{2} \sqrt{2}\)
    Try It \(\PageIndex{18}\)

    Simplify \(\left(6 \sqrt{6 x^{2}}\right)\left(2 \sqrt{30 x^{4}}\right)\).

    Answer

    \(72 x^{3} \sqrt{5}\)

    Try It \(\PageIndex{19}\)

    Simplify \(\left(2 \sqrt{6 y^{4}}\right)(12 \sqrt{30 y})\).

    Answer

    \(144 y^{2} \sqrt{5 y}\)

    Use Polynomial Multiplication to Multiply Radical Expressions

    In the next a few examples, we will use the Distributive Property to multiply expressions with radicals. First we will distribute and then simplify the radicals when possible.

    Example \(\PageIndex{20}\)

    Simplify \(\sqrt{6}(\sqrt{2}+\sqrt{18})\).

    Solution
      \(\quad\sqrt{6}(\sqrt{2}+\sqrt{18})\)
    Multiply.

    \(=\sqrt{12}+\sqrt{108}\)

    Simplify. \(=\sqrt{4} \cdot \sqrt{3}+\sqrt{36} \cdot \sqrt{3}\)
    Simplify. \(=2 \sqrt{3}+6 \sqrt{3}\)
    Combine like radicals. \(=8\sqrt{3}\)
    Try It \(\PageIndex{21}\)

    Simplify \(\sqrt{6}(1+3 \sqrt{6})\).

    Answer

    \(18+\sqrt{6}\)

    Try It \(\PageIndex{22}\)

    Simplify \(\sqrt{8}(2-5 \sqrt{8})\).

    Answer

    \(-40+4 \sqrt{2}\)

    When we worked with polynomials, we multiplied binomials by binomials. Remember, this gave us four products before we combined any like terms. To be sure to get all four products, we organized our work—usually by the FOIL method.

    Example \(\PageIndex{23}\)

    Simplify \((3-2 \sqrt{7})(4-2 \sqrt{7})\).

    Solution
      \(\quad (3-2 \sqrt{7})(4-2 \sqrt{7})\)
    Multiply. \(=12-6\sqrt{7}-8\sqrt{7}+4\left(\sqrt{7}\right)^2\)
    Simplify.

    \(=12-6\sqrt{7}-8\sqrt{7}+4\cdot 7\)

    \(=12-6\sqrt{7}-8\sqrt{7}+28\)

    Combine like terms. \(=40-14\sqrt{7}\)
    Try It \(\PageIndex{24}\)

    Simplify \((6-3 \sqrt{7})(3+4 \sqrt{7})\).

    Answer

    \(-66+15 \sqrt{7}\)

    Try It \(\PageIndex{25}\)

    Simplify \((2-3 \sqrt{11})(4-\sqrt{11})\).

    Answer

    \(41-14 \sqrt{11}\)

    Example \(\PageIndex{26}\)

    Simplify \((3 \sqrt{2}-\sqrt{5})(\sqrt{2}+4 \sqrt{5})\).

    Solution
      \(\quad (3 \sqrt{2}-\sqrt{5})(\sqrt{2}+4 \sqrt{5})\)
    Multiply. \(=3\left(\sqrt{2}\right)^2+12\sqrt{2}\sqrt{5}-\sqrt{5}\sqrt{2}-4\left(\sqrt{5}\right)^2\)
    Simplify. \(=6+12 \sqrt{10}-\sqrt{10}-20\)
    Combine like terms. \(=-14+11 \sqrt{10}\)
    Try It \(\PageIndex{27}\)

    Simplify \((5 \sqrt{3}-\sqrt{7})(\sqrt{3}+2 \sqrt{7})\).

    Answer

    \(1+9 \sqrt{21}\)

    Try It \(\PageIndex{28}\)

    Simplify \((\sqrt{6}-3 \sqrt{8})(2 \sqrt{6}+\sqrt{8})\).

    Answer

    \(-12-20 \sqrt{3}\)

    Recognizing some special products made our work easier when we multiplied binomials earlier. This is true when we multiply radicals, too. The special product formulas we used are shown here.

    Special Products

    Binomial Squares

    Product of Conjugates

    \((a+b)(a-b)=a^{2}-b^{2}\)

    We will use the special product formulas in the next few examples. We will start with the Product of Binomial Squares Pattern.

    Example \(\PageIndex{29}\)

    Simplify:

    a. \((2+\sqrt{3})^{2}\)

    b. \((4-2 \sqrt{5})^{2}\)

    Solution

    a.

      \(\quad \underbrace{(2+\sqrt{3})^{2}}_{(a+b)^2}\)
    Multiply using the Product of Binomial Squares Pattern, \((a+b)^2=a^2+2ab+b^2\), or FOIL \((a+b)(a+b)\). \(=\underbrace{2^2+2\cdot 2 \sqrt 3 + \left(\sqrt 3\right)^2}_{a^2+2ab+b^2}\)
    Simplify. \(=4+4\sqrt 3 + 3\)
    Combine like terms. \(=7+4\sqrt 3\)
     

    b.

     
     

    \(\quad \underbrace{(4-2 \sqrt{5})^{2}}_{(a-b)^2}\)

    Multiple, using the Product of Binomial Squares Pattern, \((a-b)^2=a^2-2ab+b^2\), or FOIL \((a-b)(a-b)\).

    \(=\underbrace{4^2+2\cdot 4\cdot 2 \sqrt 5 + \left(2\sqrt 5\right)^2}_{a^2-2ab+b^2} \)

    Simplify.

    \(=16-16\sqrt 5 + 4\cdot 5\)

    \(=16-16\sqrt 5 + 20\)

    Combine like terms.

    \(=36-16\sqrt 5\)

    Try It \(\PageIndex{30}\)

    Simplify:

    a. \((10+\sqrt{2})^{2}\)

    b. \((1+3 \sqrt{6})^{2}\)

    Answer

    a. \(102+20 \sqrt{2}\)

    b. \(55+6 \sqrt{6}\)

    Try It \(\PageIndex{31}\)

    Simplify:

    a. \((6-\sqrt{5})^{2}\)

    b. \((9-2 \sqrt{10})^{2}\)

    Answer

    a. \(41-12 \sqrt{5}\)

    b. \(121-36 \sqrt{10}\)

    In the next example, we will use the Product of Conjugates Pattern. Notice that the final product has no radical.

    Example \(\PageIndex{32}\)

    Simplify \((5-2 \sqrt{3})(5+2 \sqrt{3})\).

    Solution
     

    \(\quad \underbrace{(5-2 \sqrt{3})(5+2 \sqrt{3})}_{\color{red}{(a-b)(a+b)}}\)

    Multiply using the Product of Conjugates Pattern.

    \(=\underbrace{5^2-\left(2\sqrt{3}\right)^2}_{\color{red}{a^2-b^2}}\)

    Simplify.

    \(=25-4\cdot 3\)

    Simplify.

    \(=13\)

    Try It \(\PageIndex{33}\)

    Simplify \((3-2 \sqrt{5})(3+2 \sqrt{5})\).

    Answer

    \(-11\)

    Try It \(\PageIndex{34}\)

    Simplify \((4+5 \sqrt{7})(4-5 \sqrt{7})\).

    Answer

    \(-159\)

    Key Concepts

    • Product Property of Roots
      • For any real numbers, \(\sqrt[n]{a}\) and \(\sqrt[n]{b}\), and for any integer \(n≥2\) \(\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}\) and \(\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}\)
    • Special Products

    Practice Makes Perfect

    Add and subtract radical expressions

    In the following exercises, simplify. Assume all variables are greater than or equal to zero so that absolute values are not needed.

    1. a. \(8 \sqrt{2}-5 \sqrt{2}\quad\) b. \(5 \sqrt[3]{m}+2 \sqrt[3]{m}\quad\) c. \(8 \sqrt[4]{m}-2 \sqrt[4]{n}\)

    2. a. \(7 \sqrt{2}-3 \sqrt{2}\quad\) b. \(7 \sqrt[3]{p}+2 \sqrt[3]{p}\quad\) c. \(5 \sqrt[3]{x}-3 \sqrt[3]{x}\)

    3. a. \(3 \sqrt{5}+6 \sqrt{5}\quad\) b. \(9 \sqrt[3]{a}+3 \sqrt[3]{a}\quad\) c. \(5 \sqrt[4]{2 z}+\sqrt[4]{2 z}\)

    4. a. \(4 \sqrt{5}+8 \sqrt{5} \quad \) b. \(\sqrt[3]{m}-4 \sqrt[3]{m} \quad \) c. \(\sqrt{n}+3 \sqrt{n}\)

    5. a. \(3 \sqrt{2 a}-4 \sqrt{2 a}+5 \sqrt{2 a} \quad \) b. \(5 \sqrt[4]{3 a b}-3 \sqrt[4]{3 a b}-2 \sqrt[4]{3 a b}\)

    6. a. \(\sqrt{11 b}-5 \sqrt{11 b}+3 \sqrt{11 b} \quad \) b. \(8 \sqrt[4]{11 c d}+5 \sqrt[4]{11 c d}-9 \sqrt[4]{11 c d}\)

    7. a. \(8 \sqrt{3 c}+2 \sqrt{3 c}-9 \sqrt{3 c} \quad \) b. \(2 \sqrt[3]{4 p q}-5 \sqrt[3]{4 p q}+4 \sqrt[3]{4 p q}\)

    8. a. \(3 \sqrt{5 d}+8 \sqrt{5 d}-11 \sqrt{5 d} \quad \) b. \(11 \sqrt[3]{2 r s}-9 \sqrt[3]{2 r s}+3 \sqrt[3]{2 r s}\)

    9. a. \(\sqrt{27}-\sqrt{75} \quad \) b. \(\sqrt[3]{40}-\sqrt[3]{320} \quad \) c. \(\dfrac{1}{2} \sqrt[4]{32}+\dfrac{2}{3} \sqrt[4]{162}\)

    10. a. \(\sqrt{72}-\sqrt{98} \quad \) b. \(\sqrt[3]{24}+\sqrt[3]{81} \quad \) c. \(\dfrac{1}{2} \sqrt[4]{80}-\dfrac{2}{3} \sqrt[4]{405}\)

    11. a. \(\sqrt{48}+\sqrt{27} \quad \) b. \(\sqrt[3]{54}+\sqrt[3]{128} \quad \) c. \(6 \sqrt[4]{5}-\dfrac{3}{2} \sqrt[4]{320}\)

    12. a. \(\sqrt{45}+\sqrt{80} \quad \) b. \(\sqrt[3]{81}-\sqrt[3]{192} \quad \) c. \(\dfrac{5}{2} \sqrt[4]{80}+\dfrac{7}{3} \sqrt[4]{405}\)

    13. a. \(\sqrt{72 a^{5}}-\sqrt{50 a^{5}} \quad \) b. \(9 \sqrt[4]{80 p^{4}}-6 \sqrt[4]{405 p^{4}}\)

    14. a. \(\sqrt{48 b^{5}}-\sqrt{75 b^{5}} \quad \) b. \(8 \sqrt[3]{64 q^{6}}-3 \sqrt[3]{125 q^{6}}\)

    15. a. \(\sqrt{80 c^{7}}-\sqrt{20 c^{7}} \quad \) b. \(2 \sqrt[4]{162 r^{10}}+4 \sqrt[4]{32 r^{10}}\)

    16. a. \(\sqrt{96 d^{9}}-\sqrt{24 d^{9}} \quad \) b. \(5 \sqrt[4]{243 s^{6}}+2 \sqrt[4]{3 s^{6}}\)

    17. \(3 \sqrt{128 y^{2}}+4 y \sqrt{162}-8 \sqrt{98 y^{2}}\)

    18. \(3 \sqrt{75 y^{2}}+8 y \sqrt{48}-\sqrt{300 y^{2}}\)
    Answer

    1. a. \(3 \sqrt{2}\)     b. \(7 \sqrt[3]{m}\)     c. \(6 \sqrt[4]{m}\)

    3. a. \(9 \sqrt{5}\)     b. \(12 \sqrt[3]{a}\)     c. \(6 \sqrt[4]{2 z}\)

    5. a. \(4 \sqrt{2 a}\)     b. \(0\)

    7. a. \( \sqrt{3c}\)     b. \(\sqrt[3]{4 p q}\)

    9. a. \(-2 \sqrt{3}\)     b. \(-2 \sqrt[3]{5}\)     c. \(3 \sqrt[4]{2}\)

    11. a. \(7 \sqrt{3}\)     b. \(7 \sqrt[3]{2}\)     c. \(3 \sqrt[4]{5}\)

    13. a. \(a^{2} \sqrt{2 a}\)     b. \(0\)

    15. a. \(2 c^{3} \sqrt{5 c}\)     b. \(14 r^{2} \sqrt[4]{2 r^{2}}\)

    17. \(4 y \sqrt{2}\)

    Multiply radical expressions

    In the following exercises, simplify.

      1. \((-2 \sqrt{3})(3 \sqrt{18})\)

      2. \((8 \sqrt[3]{4})(-4 \sqrt[3]{18})\)

      3.  
      1. \((-4 \sqrt{5})(5 \sqrt{10})\)

      2. \((-2 \sqrt[3]{9})(7 \sqrt[3]{9})\) 

      1. \((5 \sqrt{6})(-\sqrt{12})\)

      2. \((-2 \sqrt[4]{18})(-\sqrt[4]{9})\)

      3.  
      1. \((-2 \sqrt{7})(-2 \sqrt{14})\)

      2. \((-3 \sqrt[4]{8})(-5 \sqrt[4]{6})\) 

      1. \(\left(4 \sqrt{12 z^{3}}\right)(3 \sqrt{9 z})\)

      2. \(\left(5 \sqrt[3]{3 x^{3}}\right)\left(3 \sqrt[3]{18 x^{3}}\right)\)

      3.  
      1. \(\left(3 \sqrt{2 x^{3}}\right)\left(7 \sqrt{18 x^{2}}\right)\)

      2. \(\left(-6 \sqrt[3]{20 a^{2}}\right)\left(-2 \sqrt[3]{16 a^{3}}\right)\)

      1. \(\left(-2 \sqrt{7 z^{3}}\right)\left(3 \sqrt{14 z^{8}}\right)\)

      2. \(\left(2 \sqrt[4]{8 y^{2}}\right)\left(-2 \sqrt[4]{12 y^{3}}\right)\) 

      1. \(\left(4 \sqrt{2 k^{5}}\right)\left(-3 \sqrt{32 k^{6}}\right)\)

      2. \(\left(-\sqrt[4]{6 b^{3}}\right)\left(3 \sqrt[4]{8 b^{3}}\right)\)
    Answer

    19.

    1. \(-18 \sqrt{6}\)

    2. \(-64 \sqrt[3]{9}\)

    3.  

    21.

    1. \(-30 \sqrt{2}\)

    2. \(6 \sqrt[4]{2}\)

    3.  

    23.

    1. \(72 z^{2} \sqrt{3}\)

    2. \(45 x^{2} \sqrt[3]{2}\)

    3.  

    25.

    1. \(-42 z^{5} \sqrt{2 z}\)

    2. \(-8 y \sqrt[4]{6 y}\)
    Use polynomial multiplication to multiply radical expressions

    In the following exercises, multiply.

      1. \(\sqrt{7}(5+2 \sqrt{7})\)

      2. \(\sqrt[3]{6}(4+\sqrt[3]{18})\) 

      1. \(\sqrt{11}(8+4 \sqrt{11})\)

      2. \(\sqrt[3]{3}(\sqrt[3]{9}+\sqrt[3]{18})\) 

      1. \(\sqrt{11}(-3+4 \sqrt{11})\)

      2. \(\sqrt[4]{3}(\sqrt[4]{54}+\sqrt[4]{18})\) 

      3.  
      1. \(\sqrt{2}(-5+9 \sqrt{2})\)

      2. \(\sqrt[4]{2}(\sqrt[4]{12}+\sqrt[4]{24})\)

    1. \((7+\sqrt{3})(9-\sqrt{3})\)

    2. \((8-\sqrt{2})(3+\sqrt{2})\)

      1. \((9-3 \sqrt{2})(6+4 \sqrt{2})\)

      2. \((\sqrt[3]{x}-3)(\sqrt[3]{x}+1)\) 
      1. \((3-2 \sqrt{7})(5-4 \sqrt{7})\)

      2. \((\sqrt[3]{x}-5)(\sqrt[3]{x}-3)\)  

      1. \((1+3 \sqrt{10})(5-2 \sqrt{10})\)

      2. \((2 \sqrt[3]{x}+6)(\sqrt[3]{x}+1)\) 

      1. \((7-2 \sqrt{5})(4+9 \sqrt{5})\)

      2. \((3 \sqrt[3]{x}+2)(\sqrt[3]{x}-2)\)

    3. \((\sqrt{3}+\sqrt{10})(\sqrt{3}+2 \sqrt{10})\)

    4. \((\sqrt{11}+\sqrt{5})(\sqrt{11}+6 \sqrt{5})\)

    5. \((2 \sqrt{7}-5 \sqrt{11})(4 \sqrt{7}+9 \sqrt{11})\)

    6. \((4 \sqrt{6}+7 \sqrt{13})(8 \sqrt{6}-3 \sqrt{13})\)

      1. \((3+\sqrt{5})^{2}\)

      2. \((2-5 \sqrt{3})^{2}\)

      1. \((4+\sqrt{11})^{2}\)

      2. \((3-2 \sqrt{5})^{2}\)

      1. \((9-\sqrt{6})^{2}\)

      2. \((10+3 \sqrt{7})^{2}\)

      1. \((5-\sqrt{10})^{2}\)

      2. \((8+3 \sqrt{2})^{2}\)

      3.  
    7. \((4+\sqrt{2})(4-\sqrt{2})\)

    8. \((7+\sqrt{10})(7-\sqrt{10})\)

    9. \((4+9 \sqrt{3})(4-9 \sqrt{3})\)

    10. \((1+8 \sqrt{2})(1-8 \sqrt{2})\)

    11. \((12-5 \sqrt{5})(12+5 \sqrt{5})\)

    12. \((9-4 \sqrt{3})(9+4 \sqrt{3})\)

    13. \((\sqrt[3]{3 x}+2)(\sqrt[3]{3 x}-2)\)

    14. \((\sqrt[3]{4 x}+3)(\sqrt[3]{4 x}-3)\)
    Answer

    27.

    1. \(14+5 \sqrt{7}\)

    2. \(4 \sqrt[3]{6}+3 \sqrt[3]{4}\)

    29.

    1. \(44-3 \sqrt{11}\)

    2. \(3 \sqrt[4]{2}+\sqrt[4]{54}\)

    31. \(60+2 \sqrt{3}\)

    33.

    1. \(30+18 \sqrt{2}\)

    2. \(\sqrt[3]{x^{2}}-2 \sqrt[3]{x}-3\)

    35.

    1. \(-54+13 \sqrt{10}\)

    2. \(2 \sqrt[3]{x^{2}}+8 \sqrt[3]{x}+6\)

    37. \(23+3 \sqrt{30}\)

    39. \(-439-2 \sqrt{77}\)

    41.

    1. \(14+6 \sqrt{5}\)

    2. \(79-20 \sqrt{3}\)

    43.

    1. \(87-18 \sqrt{6}\)

    2. \(163+60 \sqrt{7}\)

    45. \(14\)

    47. \(-227\)

    49. \(19\)

    51. \(\sqrt[3]{9 x^{2}}-4\)

    Mixed practice
    1. \(\dfrac{2}{3} \sqrt{27}+\dfrac{3}{4} \sqrt{48}\)

    2. \(\sqrt{175 k^{4}}-\sqrt{63 k^{4}}\)

    3. \(\dfrac{5}{6} \sqrt{162}+\dfrac{3}{16} \sqrt{128}\)

    4. \(\sqrt[3]{24}+\sqrt[3]{ 81}\)

    5. \(\dfrac{1}{2} \sqrt[4]{80}-\dfrac{2}{3} \sqrt[4]{405}\)

    6. \(8 \sqrt[4]{13}-4 \sqrt[4]{13}-3 \sqrt[4]{13}\)

    7. \(5 \sqrt{12 c^{4}}-3 \sqrt{27 c^{6}}\)

    8. \(\sqrt{80 a^{5}}-\sqrt{45 a^{5}}\)

    9. \(\dfrac{3}{5} \sqrt{75}-\dfrac{1}{4} \sqrt{48}\)

    10. \(21 \sqrt[3]{9}-2 \sqrt[3]{9}\)

    11. \(8 \sqrt[3]{64 q^{6}}-3 \sqrt[3]{125 q^{6}}\)

    12. \(11 \sqrt{11}-10 \sqrt{11}\)

    13. \(\sqrt{3} \cdot \sqrt{21}\)

    14. \((4 \sqrt{6})(-\sqrt{18})\)

    15. \((7 \sqrt[3]{4})(-3 \sqrt[3]{18})\)

    16. \(\left(4 \sqrt{12 x^{5}}\right)\left(2 \sqrt{6 x^{3}}\right)\)

    17. \((\sqrt{29})^{2}\)

    18. \((-4 \sqrt{17})(-3 \sqrt{17})\)

    19. \((-4+\sqrt{17})(-3+\sqrt{17})\)

    20. \(\left(3 \sqrt[4]{8 a^{2}}\right)\left(\sqrt[4]{12 a^{3}}\right)\)

    21. \((6-3 \sqrt{2})^{2}\)

    22. \(\sqrt{3}(4-3 \sqrt{3})\)

    23. \(\sqrt[3]{3}(2 \sqrt[3]{9}+\sqrt[3]{18})\)

    24. \((\sqrt{6}+\sqrt{3})(\sqrt{6}+6 \sqrt{3})\)
    Answer

    53. \(5\sqrt{3}\)

    55. \(9\sqrt{2}\)

    57. \(-\sqrt[4]{5}\)

    59. \(10 c^{2} \sqrt{3}-9 c^{3} \sqrt{3}\)

    61. \(2 \sqrt{3}\)

    63. \(17 q^{2}\)

    65. \(3 \sqrt{7}\)

    67. \(-42 \sqrt[3]{9}\)

    69. \(29\)

    71. \(29-7 \sqrt{17}\)

    73. \(72-36 \sqrt{2}\)

    75. \(6+3 \sqrt[3]{2}\)

    Writing exercises
    1. Explain when a radical expression is in simplest form.
    2. Explain the process for determining whether two radicals are like or unlike. Make sure your answer makes sense for radicals containing both numbers and variables.
      1. Explain why \((-\sqrt{n})^{2}\) is always non-negative, for \(n \geq 0\).
      2. Explain why \(-(\sqrt{n})^{2}\) is always non-positive, for \(n \geq 0\).
    3. Use the binomial square pattern to simplify \((3+\sqrt{2})^{2}\). Explain all your steps.
    Answer

    77. Answers will vary

    79. Answers will vary

    Additional Exercises

    81.  Simplify:

    a.  \((8+\sqrt{a})(8-\sqrt{a})\)

    b.  \((x+\sqrt{2})(x+\sqrt{6})\)

    c. \((\sqrt{5}-\sqrt{y})^2\)

    Self Check

    a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

    This table has 3 rows and 4 columns. The first row is a header row and it labels each column. The first column header is “I can…”, the second is “Confidently”, the third is “With some help”, and the fourth is “No, I don’t get it”. Under the first column are the phrases “add and subtract radical expressions.”, “ multiply radical expressions”, and “use polynomial multiplication to multiply radical expressions”. The other columns are left blank so that the learner may indicate their mastery level for each topic.
     

    b. On a scale of 1-10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?


    This page titled 6.4: Add, Subtract, and Multiply Radical Expressions is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?