Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

6.E: Continuity - What It Isn’t and What It Is (Exercises)

 

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

Q1

Use the definition of continuity to prove that the constant function \(g(x) = c\) is continuous at any point a.

Q2

  1. Use the definition of continuity to prove that \(\ln x\) is continuous at \(1\). [Hint: You may want to use the fact \(\left |\ln x \right | < \varepsilon \Leftrightarrow -\varepsilon < \ln x < \varepsilon\) to find a \(δ\).]
  2. Use part (a) to prove that \(\ln x\) is continuous at any positive real number \(a\). [Hint: \(\ln (x) = \ln (x/a) + \ln (a)\). This is a combination of functions which are continuous at \(a\). Be sure to explain how you know that \(\ln (x/a)\) is continuous at \(a\).]

Q3

Write a formal definition of the statement \(f\) is not continuous at \(a\), and use it to prove that the function \(f(x) = \begin{cases} x & \text{ if } x\neq 1 \\ 0 & \text{ if } x= 1 \end{cases}\) is not continuous at \(a = 1\).

Contributor

  • Eugene Boman (Pennsylvania State University) and Robert Rogers (SUNY Fredonia)