Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

2.3: Using computers

 

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

A related reason for using (particularly mathematical) formal methods for representing social networks is that mathematical representations allow us to apply computers to the analysis of network data. Why this is important will become clearer as we learn more about how structural analysis of social networks occurs. Suppose, for a simple example, we had information about trade-flows of 50 different commodities (e.g. coffee, sugar, tea, copper, bauxite) among the 170 or so nations of the world system in a given year. Here, the 170 nations can be thought of as actors or nodes, and the amount of each commodity exported from each nation to each of the other 169 can be thought of as the strength of a directed tie from the focal nation to the other. A social scientist might be interested in whether the "structures" of trade in mineral products are more similar to one another than, the structure of trade in mineral products are to vegetable products. To answer this fairly simple (but also pretty important) question, a huge amount of manipulation of the data is necessary. It could take, literally, years to do by hand; it can be done by a computer in a few minutes.