Skip to main content
Mathematics LibreTexts

1.3: Volume by Cylindrical Shells

  • Page ID
    505
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Cylindrical Shells

    Consider rotating the region between the curve

    \[y = x^2, \nonumber\]

    the line

    \[x = 2, \nonumber\]

    and the x-axis about the y-axis.

    alt

    If instead of taking a cross section perpendicular to the y-axis, we take a cross section perpendicular to the x-axis, and revolve it about the y-axis, we get a cylinder. Recall that the area of a cylinder is given by:

    \[ A = 2\pi r h \nonumber\]

    where \(r\) is the radius of the cylinder and \(h\) is the height of the cylinder. We can see that the radius is the x coordinate of the point on the curve, and the height is the y coordinate of the curve. Hence

    \[A(x) = 2\pi xy = 2\pi x(x^2). \nonumber\]

    Therefore the volume is given by

    \[ \begin{align*} \text{Volume} &= 2\pi \int_{0}^{1} x^3 dx \\ &= \dfrac{\pi}{2}. \end{align*} \]

    Example 1

    Find the volume of revolution of the region bounded by the curves

    • \(y = x^2 + 2\)
    • \(y = x + 4\)
    • and the y-axis

    about the y-axis.

    Solution

    We draw the picture with a cross section perpendicular to the x-axis.

    alt

    The radius of the cylinder is \(x\) and the height is the difference of the \(y\) coordinates:

    \[h = (x + 4) - (x^2 + 2). \nonumber\]

    We solve for \(b\).

    \[\begin{align*} (x+4)&=(x^2+2) \\ x^2-x-2&=0 \\ (x-2)(x+1)&=0 \end{align*} \]

    So that \(b = 2\). Hence the volume is equal to

    \[\begin{align*} 2 \pi \int_{0}^{2} \big[ (x+4) -(x^2+2) \big] dx &= 2 \pi \int_{0}^{2}(x^2+2x-x^3) dx \\ &= 2 \pi \left(\dfrac{x^3}{3}+x^2-\dfrac{x^4}{4} \right]_{0}^{2} \\ &= 2 \pi \Big( \dfrac{8}{3}+4 -4 \Big) \\ &= \dfrac{16 \pi}{3}. \end{align*} \]

    Exercises

    1. \(y=x^2-3x+2\), \(y=0 \) about the y-axis
    2. \(y=x^2-7x+6\), \(y=0 \) about the y-axis
    3. \(x=1-y^2 \), \(x=0 \) (first quadrant) about the x-axis
    4. \(y=x\sqrt{1+x^3}\), \(y=0\), \(x=2 \) about the y-axis
    5. \((x-1)^2+y^2=1\) about the y-axis
    6. \(x^2+(y-1)^2=1\) about the x-axis
    7. \(y=x^2-2x+1\), \(y=1\) about the line \(x=3\)

    Answers

    Contributors and Attributions


    This page titled 1.3: Volume by Cylindrical Shells is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?