Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3.0: Prelude to Generating Functions

As we have seen, a typical counting problem includes one or more parameters, which of course show up in the solutions, such as \(n\choose k\), \(P(n,k)\), or the number of derangements of \([n]\). Also recall that

$$(x+1)^n=\sum_{k=0}^n {n\choose k}x^k.$$

This provides the values \({n\choose k}\) as coefficients of the Maclaurin expansion of a function. This turns out to be a useful idea.

Definition: generating function

\(f(x)\) is a generating function for the sequence \(a_0,a_1,a_2,\ldots\) if

$$f(x)=\sum_{i=0}^\infty a_i x^i.$$

Sometimes a generating function can be used to find a formula for its coefficients, but if not, it gives a way to generate them. Generating functions can also be useful in proving facts about the coefficients.