Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

6.4: Initial-Boundary Value Problems

[ "article:topic", "showtoc:no" ]
  • Page ID
    2159
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Consider the initial-boundary value problem for \(c=c(x,t)\)

    \begin{eqnarray}
    \label{sol1}
    c_t&=&D\triangle c\ \ \mbox{in}\ \Omega\times (0,\infty)\\
    \label{sol2}
    c(x,0)&=&c_0(x)\ \ x\in\overline{\Omega}\\
    \label{sol3}
    \frac{\partial c}{\partial n}&=& 0\ \ \mbox{on}\ \partial\Omega\times (0,\infty).
    \end{eqnarray}

    Here is \(\Omega\subset\mathbb{R}^n\), \(n\) the exterior unit normal at the smooth parts of \(\partial\Omega\), \(D\) a  positive constant and \(c_0(x)\) a given function.

    Remark. In application to diffusion problems, \(c(x,t)\) is the concentration of a substance in a solution, \(c_0(x)\) its initial concentration and \(D\) the coefficient of diffusion.
    The first Fick's rule says that

    \[w=D\partial c/\partial n,\]

    where \(w\) is the flow of the substance through the boundary \(\partial\Omega\). Thus according to the Neumann boundary condition (\ref{sol3}), we assume that there is no flow through the boundary.

    Contributors