Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

7.1: Fundamental Solution

  • Page ID
    2162
  • [ "article:topic" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Here we consider particular solutions of the Laplace equation in \(\mathbb{R}^n\) of the type

    $$u(x)=f(|x-y|),$$

    where  \(y\in\mathbb{R}^n\) is fixed and \(f\) is a function which we will determine such that \(u\) defines a solution if the Laplace equation.

    Set \(r=|x-y|\), then

    \begin{eqnarray*}
    u_{x_i}&=&f'(r)\frac{x_i-y_i}{r}\\
    u_{x_ix_i}&=&f''(r)\frac{(x_i-y_i)^2}{r^2}+f'(r)\left(\frac{1}{r}-\frac{(x_i-y_i)^2}{r^3}\right)\\
    \triangle u&=&f''(r)+\frac{n-1}{r}f'(r).
    \end{eqnarray*}

    Thus a solution of \(\triangle u=0\) is given by

    $$f(r)=\left\{\begin{array}{r@{\quad:\quad}l}
    c_1\ln r+c_2&n=2\\
    c_1r^{2-n}+c_2&n\ge3
    \end{array}\right.$$

    with constants \(c_1\), \(c_2\).

    Definition. Set \(r=|x-y|\). The function

    $$
    s(r):=\left\{\begin{array}{r@{\quad:\quad}l}
    -\frac{1}{2\pi}\ln r&n=2\\
    \frac{r^{2-n}}{(n-2)\omega_n}&n\ge3
    \end{array}\right.
    $$

    is called singularity function associated to the Laplace equation. Here is \(\omega_n\) the area of the n-dimensional unit sphere which is given by\(\omega_n=2\pi^{n/2}/\Gamma(n/2)\), where

    $$\Gamma(t):=\int_0^\infty\ e^{-\rho}\rho^{t-1}\ d\rho,\ \ t>0,$$

    is the Gamma function.

    Definition. A function

    $$\gamma(x,y)=s(r)+\phi(x,y)$$

    is called fundamental solution associated to the Laplace equation if \(\phi\in C^2(\Omega)\) and \(\triangle_x\phi=0\) for each fixed \(y\in\Omega\).

    Remark. The fundamental solution \(\gamma\) satisfies for each fixed \(y\in\Omega\) the relation

    $$-\int_\Omega\ \gamma(x,y)\triangle_x\Phi(x)\ dx=\Phi(y)\ \ \mbox{for all}\ \Phi\in C_0^2(\Omega),$$

    see an exercise. This formula follows from considerations similar to the next section.

    In the language of distribution, this relation can be written by definition as

    $$-\triangle_x\gamma(x,y)=\delta(x-y),$$

    where \(\delta\) is the Dirac distribution, which is called \(\delta\)-function.

    Contributors