Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

5.E: Exercises for Chapter 5

  • Page ID
    292
  • [ "article:topic", "vettag:vet4", "targettag:lower", "authortag:schilling", "authorname:schilling" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Calculational Exercises

    1. Show that the vectors \(v_1 = (1, 1, 1), v_2 = (1, 2, 3)\), and \(v_3 = (2, −1, 1)\) are linearly independent in \(\mathbb{R}^3\). Write \(v = (1, −2, 5)\) as a linear combination of \(v_1 , v_2\), and \(v_3\).

    2. Consider the complex vector space \(V = \mathbb{C}^3\) and the list \((v_1 , v_2 , v_3 )\) of vectors in \(V\) , where

    \[v_1 = (i, 0, 0),~ v_2 = (i, 1, 0),~ v_3 = (i, i, −1).\]

         (a) Prove that \(span(v_1 , v-2 , v_3 ) = V.\)
         (b) Prove or disprove: \((v_1 , v_2 , v_3)\) is a basis for \(V.\)

    3. Determine the dimension of each of the following subspaces of \(\mathbb{F}^4\) .
         (a) \(\{(x_1 , x_2 , x_3 , x_4 ) \in \mathbb{F}^4 | x_4 = 0\}.\)
         (b) \(\{(x_1 , x_2 , x_3 , x_4 ) \in \mathbb{F}^4 | x_4 = x_1 + x_2 \}.\)
         (c) \(\{(x_1 , x_2 , x_3 , x_4 ) \in \mathbb{F}^4 | x_4 = x_1 + x_2 , x_3 = x_1 − x_2 \}.\)
         (d) \(\{(x_1 , x_2 , x_3 , x_4 ) \in \mathbb{F}^4 | x_4 = x_1 + x_2 , x_3 = x_1 − x_2 , x_3 + x_4 = 2x_1 \}.\)
         (e) \(\{(x_1 , x_2 , x_3 , x_4 ) \in \mathbb{F}^4 | x_1 = x_2 = x_3 = x_4 \}.\)

    4. Determine the value of \(\lambda \in \mathbb{R}\) for which each list of vectors is linear dependent.
         (a)  \(((\lambda, −1, −1), (−1, \lambda, −1), (−1, −1, \lambda))\) as a subset of \(\mathbb{R}^3.\)
         (b)  \(sin2 (x), cos(2x), \lambda\) as a subset of \(\cal{C}(\mathbb{R}).\)

    5. Consider the real vector space \(V = \mathbb{R}^4.\) For each of the following five statements, provide either a proof or a counterexample.
         (a) \(dim V = 4.\)
         (b) \(span((1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)) = V.\)
         (c) The list \(((1, −1, 0, 0), (0, 1, −1, 0), (0, 0, 1, −1), (−1, 0, 0, 1))\) is linearly independent.
         (d) Every list of four vectors \(v_1 , \ldots, v_4 \in V\) , such that \(span(v_1 , \ldots, v_4 ) = V\) , is linearly independent.
         (e) Let \(v_1\) and \(v_2\) be two linearly independent vectors in \(V\) . Then, there exist vectors \(u, w \in V\) , such that \((v_1 , v_2 ,            u, w)\) is a basis for \(V.\)

    Proof-Writing Exercises

    1.  Let \(V\) be a vector space over \(\mathbb{F}\) and define \(U = span(u_1, u_2, \ldots ,u_n)\), where for each
    \(i = 1, \ldots ,n, u_i \in V \). Now suppose \(v \in U\). Prove


    \[U = span(v, u_1, u_2, \ldots ,u_n) .\]

    2. Let \(V\) be a vector space over \(\mathbb{F}\), and suppose that the list \((v_1 , v_2 , . . . , v_n )\) of vectors spans \(V\) , where each \(v_i \in V\) . Prove that the list


    \[(v_1 − v_2 , v_2 − v_3 , v_3 − v_4 , \ldots , v_{n−2} − v_{n−1} , v_{n−1} − v_n , v_n )\]

    also spans \(V.\)

    3. Let \(V\) be a vector space over \(\mathbb{F}\), and suppose that \((v_1 , v_2 , \ldots, v_n)\) is a linearly independent list of vectors in \(V\) . Given any \(w \in V\) such that

    \[(v_1 + w, v_2 + w, \ldots , v_n + w)\]

    is a linearly dependent list of vectors in \(V\) , prove that \(w \in span(v_1 , v_2 , \ldots, v_n).\)

    4. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\) with \(dim(V ) = n\) for some \(n \in \mathbb{Z}_+\). Prove that there are \(n\) one-dimensional subspaces \(U_1 , U_2 , \ldots , U_n\) of \(V\) such that

    \[V = U_1 \oplus U_2 \oplus \cdots \oplus U_n .\]

    5. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\), and suppose that \(U\) is a subspace of \(V\) for which \(dim(U) = dim(V ).\) Prove that \(U = V.\)

    6. Let \(\mathbb{F}_m [z] \) denote the vector space of all polynomials with degree less than or equal to \(m \in \mathbb{Z}_+\) and having coefficient over \(\mathbb{F}\), and suppose that\( p_0 , p_1 , \ldots , p_m \in \mathbb{F}_m [z]\) satisfy \(p_j (2) = 0\). Prove that \((p_0 , p_1 , \ldots , p_m )\) is a linearly dependent list of vectors in \(\mathbb{F}_m [z].\)

    7. Let \(U\) and \(V\) be five-dimensional subspaces of \(\mathbb{R}^9\) . Prove that \(U \cap V = \{0\}.\)

    8. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F},\) and suppose that \(U_1 , U_2 , \ldots, U_m\) are any \(m\) subspaces of \(V\) . Prove that


    \[dim(U_1 + U_2 + \cdots + U_m ) \leq dim(U_1 ) + dim(U_2 ) + \cdots + dim(U_m ).\]