Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

4.5E: Graphs of Logarithmic Functions (Exercises)

  • Page ID
    13909
  • [ "article:topic", "license:ccbysa", "showtoc:no", "authorname:lippmanrasmussen" ]

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Section 4.5 Exercises

    For each function, find the domain and the vertical asymptote. \[1. f\left(x\right)=\log \left(x-5\right) 2. f\left(x\right)=\log \left(x+2\right)\] \[3. f\left(x\right)=\ln \left(3-x\right) 4. f\left(x\right)=\ln \left(5-x\right)\] \[5. f\left(x\right)=\log \left(3x+1\right) 6. f\left(x\right)=\log \left(2x+5\right)\] \[7. f\left(x\right)=3\log \left(-x\right)+2 8. f\left(x\right)=2\log \left(-x\right)+1\]

    Sketch a graph of each pair of functions. \[9. f\left(x\right)=\log \left(x\right),\; g\left(x\right)=\ln \left(x\right) 10. f\left(x\right)=\log _{2} (x),\; g\left(x\right)=\log _{4} \left(x\right)\]

    Sketch each transformation. \[11. f\left(x\right)=2\log \left(x\right) 12. f\left(x\right)=3\ln \left(x\right)\] \[13. f\left(x\right)=\ln \left(-x\right) 14. f\left(x\right)=-\log \left(x\right)\] \[15. f\left(x\right)=\log _{2} (x+2) 16. f\left(x\right)=\log _{3} \left(x+4\right)\]

    Find a formula for the transformed logarithm graph shown.

    17. image 18. image

    19. image 20. image

    Find a formula for the transformed logarithm graph shown.

    21. image 22.image

    23. image 24. image321

    Section 4.6 Exponential and Logarithmic Models