$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 4-6. Exponential and Logarithmic Equations

Exponential and Logarithmic Equations
In this section, you will:
• Use like bases to solve exponential equations.
• Use logarithms to solve exponential equations.
• Use the definition of a logarithm to solve logarithmic equations.
• Use the one-to-one property of logarithms to solve logarithmic equations.
• Solve applied problems involving exponential and logarithmic equations.
<figure class="small" id="CNX_Precalc_Figure_04_06_001" style="color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 1; word-spacing: 0px; -webkit-text-stroke-width: 0px;"> <figcaption>Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as the “rabbit plague.” (credit: Richard Taylor, Flickr)</figcaption> </figure>

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because Australia had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions. Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential growth. In this section, we will learn techniques for solving exponential functions.

# Using Like Bases to Solve Exponential Equations

The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions tells us that, for any real numbers<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>S</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>T</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>></mo><mn>0</mn><mo>,</mo><mtext> </mtext><mi>b</mi><mo>≠</mo><mn>1</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>b</mi></msup></mrow></annotation-xml></semantics>[/itex] S = b T  if and only if<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mo>=</mo><mi>T</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 3 4x−7 = 3 2x 3 . To solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] we use the division property of exponents to rewrite the right side so that both sides have the common base,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>3.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Then we apply the one-to-one property of exponents by setting the exponents equal to one another and solving for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>:</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext> </mtext><mtext> </mtext><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 3 4x−7 = 3 2x 3    3 4x−7 = 3 2x 3 1 Rewrite 3 as 3 1 .    3 4x−7 = 3 2x−1 Use the division property of exponents. 4x−7 =2x−1    Apply the one-to-one property of exponents.      2x =6 Subtract 2x and add 7 to both sides.        x =3 Divide by 3.
Using the One-to-One Property of Exponential Functions to Solve Exponential Equations

For any algebraic expressions<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mtext> and </mtext><mi>T</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] and any positive real number<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>≠</mo><mn>1</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>b</mi></msup></mrow></annotation-xml></semantics>[/itex] S = b T   if and only if  S=T

Given an exponential equation with the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] b S = b T , where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>T</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] are algebraic expressions with an unknown, solve for the unknown.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] b S = b T .
2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mo>=</mo><mi>T</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] for the unknown.
Solving an Exponential Equation with a Common Base

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 2 x−1 = 2 2x−4 .

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mo> </mo><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 2 x−1 = 2 2x−4 The common base is  2.     x−1=2x−4 By the one-to-one property the exponents must be equal.            x=3Solve for x.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 5 2x = 5 3x+2 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mo>−</mo><mn>2</mn></mrow></annotation-xml></semantics>[/itex]

## Rewriting Equations So All Powers Have the Same Base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>256</mn><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] 4 x−5 . We can rewrite both sides of this equation as a power of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Then we apply the rules of exponents, along with the one-to-one property, to solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>:</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>256</mn><mo>=</mo><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 4 x−5     2 8 = ( 2 2 ) x−5 Rewrite each side as a power with base 2.     2 8 = 2 2x−10 Use the one-to-one property of exponents.       8=2x−10 Apply the one-to-one property of exponents.    18=2x Add 10 to both sides.       x=9Divide by 2.

Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1. Rewrite each side in the equation as a power with a common base.
2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] b S = b T .
3. Use the one-to-one property to set the exponents equal.
4. Solve the resulting equation,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mo>=</mo><mi>T</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] for the unknown.
Solving Equations by Rewriting Them to Have a Common Base

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 8 x+2 = 16 x+1 .

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext> </mtext><mtext>    </mtext><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 8 x+2 = 16 x+1 ( 2 3 ) x+2 = ( 2 4 ) x+1 Write  8 and 16 as powers of  2.     2 3x+6 = 2 4x+4To take a power of a power, multiply exponents.    3x+6=4x+4 Use the one-to-one property to set the exponents equal.            x=2 Solve for x.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 5 2x = 25 3x+2 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]

Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 2 5x = 2 .

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><msup><mn>2</mn></msup></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 5x = 2 1 2       Write the square root of  2 as a power of  2.   5x= 1 2 Use the one-to-one property.      x= 1 10 Solve for x.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 5 x = 5 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 2

Do all exponential equations have a solution? If not, how can we tell if there is a solution during the problem-solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain an expression that is undefined.

Solving an Equation with Positive and Negative Powers

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 3 x+1 =−2.

This equation has no solution. There is no real value of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]that will make the equation a true statement because any power of a positive number is positive.

Analysis

[link] shows that the two graphs do not cross so the left side is never equal to the right side. Thus the equation has no solution.

<figure class="small" id="CNX_Precalc_Figure_04_06_002"></figure>

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 2 x =−100.

The equation has no solution.

# Solving Exponential Equations Using Logarithms

Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by taking the logarithm of each side. Recall, since<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] a )=log( b ) is equivalent to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>a</mi><mo>=</mo><mi>b</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] we may apply logarithms with the same base on both sides of an exponential equation.

Given an exponential equation in which a common base cannot be found, solve for the unknown.

1. Apply the logarithm of both sides of the equation.
• If one of the terms in the equation has base 10, use the common logarithm.
• If none of the terms in the equation has base 10, use the natural logarithm.
2. Use the rules of logarithms to solve for the unknown.
Solving an Equation Containing Powers of Different Bases

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 5 x+2 = 4 x .

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>          </mtext><mtext> </mtext><mtext> </mtext><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 5 x+2 = 4 x There is no easy way to get the powers to have the same base.          ln 5 x+2 =ln 4 xTake ln of both sides.      (x+2)ln5=xln4 Use laws of logs.   xln5+2ln5=xln4 Use the distributive law.   xln5−xln4=−2ln5Get terms containing x on one side, terms without x on the other.   x(ln5−ln4)=−2ln5 On the left hand side, factor out an x.           xln( 5 4 )=ln( 1 25 ) Use the laws of logs.                    x= ln( 1 25 ) ln( 5 4 ) Divide by the coefficient of x.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 2 x = 3 x+1 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mstyle scriptlevel="+1"/></mrow></annotation-xml></semantics>[/itex] ln3 ln( 2 3 )

Is there any way to solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 2 x = 3 x ?

Yes. The solution is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>0.</mn></mrow></annotation-xml></semantics>[/itex]

## Equations Containing e

One common type of exponential equations are those with base<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>e</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]This constant occurs again and again in nature, in mathematics, in science, in engineering, and in finance. When we have an equation with a base<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>e</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]on either side, we can use the natural logarithm to solve it.

Given an equation of the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>A</mi><msup/></mrow></annotation-xml></semantics>[/itex] e kt , solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

1. Divide both sides of the equation by<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>A</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]
2. Apply the natural logarithm of both sides of the equation.
3. Divide both sides of the equation by<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>k</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]
Solve an Equation of the Form y = Aekt

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>100</mn><mo>=</mo><mn>20</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 2t .

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>100</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] =20 e 2t    5 = e 2t Divide by the coefficient of the power. ln5 =2t Take ln of both sides. Use the fact that ln(x) and  e x are inverse functions.    t = ln5 2       Divide by the coefficient of t.
Analysis

Using laws of logs, we can also write this answer in the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>=</mo><mi>ln</mi><msqrt/></mrow></annotation-xml></semantics>[/itex] 5 .If we want a decimal approximation of the answer, we use a calculator.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>3</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 0.5t =11.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mo>=</mo><mn>2</mn><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 11 3 ) or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ln</mi><msup/></mrow></annotation-xml></semantics>[/itex] ( 11 3 ) 2

Does every equation of the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>A</mi><msup/></mrow></annotation-xml></semantics>[/itex] e kt  have a solution?

No. There is a solution when<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>k</mi><mo>≠</mo><mn>0</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]and when<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>A</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are either both 0 or neither 0, and they have the same sign. An example of an equation with this form that has no solution is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mo>=</mo><mn>−3</mn><msup/></mrow></annotation-xml></semantics>[/itex] e t .

Solving an Equation That Can Be Simplified to the Form y = Aekt

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>4</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 2x +5=12.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>4</mn><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] e 2x +5=12           4 e 2x =7 Combine like terms.               e 2x = 7 4 Divide by the coefficient of the power.                2x=ln( 7 4) Take ln of both sides.                   x= 1 2 ln( 7 4 ) Solve for x.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>3</mn><mo>+</mo><msup/></mrow></annotation-xml></semantics>[/itex] e 2t =7 e 2t .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mo>=</mo><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 1 2 )=− 1 2 ln( 2 )

## Extraneous Solutions

Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be positive. If the number we are evaluating in a logarithm function is negative, there is no output.

Solving Exponential Functions in Quadratic Form

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] e 2x − e x =56.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] e 2x − e x =56      e 2x − e x −56 =0 Get one side of the equation equal to zero. ( e x +7)( e x −8) =0Factor by the FOIL method.                  e x +7 =0 or  e x −8=0 If a product is zero, then one factor must be zero.                         e x=−7  or e x =8 Isolate the exponentials.                         e x =8 Reject the equation in which the power equals a negative number.                        x =ln8 Solve the equation in which the power equals a positive number.
Analysis

When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because zero has the unique property that when a product is zero, one or both of the factors must be zero. We reject the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] e x =−7 because a positive number never equals a negative number. The solution<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mi>ln</mi><mo stretchy="false">(</mo><mn>−7</mn><mo stretchy="false">)</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is not a real number, and in the real number system this solution is rejected as an extraneous solution.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] e 2x = e x +2.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mi>ln</mi><mn>2</mn></mrow></annotation-xml></semantics>[/itex]

Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous solutions.

# Using the Definition of a Logarithm to Solve Logarithmic Equations

We have already seen that every logarithmic equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log b ( x )=y is equivalent to the exponential equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] b y =x. We can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic expression.

For example, consider the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log 2 ( 2 )+ log 2 ( 3x−5 )=3.  To solve this equation, we can use rules of logarithms to rewrite the left side in compact form and then apply the definition of logs to solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>:</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 2 (2)+ log 2 (3x−5)=3              log 2 (2(3x−5))=3 Apply the product rule of logarithms.                log 2 (6x−10)=3Distribute.                                   2 3 =6x−10 Apply the definition of a logarithm.                                   8=6x−10 Calculate  23 .                                 18=6x Add 10 to both sides.                                   x=3 Divide by 6.
Using the Definition of a Logarithm to Solve Logarithmic Equations

For any algebraic expression<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and real numbers<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>c</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex]where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>></mo><mn>0</mn><mo>,</mo><mtext> </mtext><mi>b</mi><mo>≠</mo><mn>1</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] b (S)=c  if and only if   b c =S
Using Algebra to Solve a Logarithmic Equation

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>ln</mi><mi>x</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>7.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>2</mn><mi>ln</mi><mi>x</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>7</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]        2lnx=4 Subtract 3.          lnx=2 Divide by 2.             x= e 2 Rewrite in exponential form.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>6</mn><mo>+</mo><mi>ln</mi><mi>x</mi><mo>=</mo><mn>10.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] e 4

Using Algebra Before and After Using the Definition of the Natural Logarithm

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>ln</mi><mo stretchy="false">(</mo><mn>6</mn><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>7.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>2</mn><mi>ln</mi><mo stretchy="false">(</mo><mn>6</mn><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>7</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]   ln(6x)= 7 2 Divide by 2.         6x= e ( 7 2 ) Use the definition of ln.           x= 1 6 e ( 7 2 ) Divide by 6.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>ln</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mn>10.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><msup/></mrow></annotation-xml></semantics>[/itex] e 5 −1

Using a Graph to Understand the Solution to a Logarithmic Equation

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ln</mi><mi>x</mi><mo>=</mo><mn>3.</mn></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>ln</mi><mi>x</mi><mo>=</mo><mn>3</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]      x= e 3 Use the definition of the natural logarithm.

[link] represents the graph of the equation. On the graph, the x-coordinate of the point at which the two graphs intersect is close to 20. In other words<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] e 3 ≈20. A calculator gives a better approximation:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] e 3 ≈20.0855.

<figure class="small" id="CNX_Precalc_Figure_04_06_003"> <figcaption>The graphs of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>ln</mi><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mn>3</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]cross at the point<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] (e 3 ,3),which is approximately (20.0855, 3).</figcaption> </figure>

Use a graphing calculator to estimate the approximate solution to the logarithmic equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 2 x =1000 to 2 decimal places.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>≈</mo><mn>9.97</mn></mrow></annotation-xml></semantics>[/itex]

# Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one property of logarithmic functions tells us that, for any real numbers<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>S</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex] <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>T</mi><mo>></mo><mn>0</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and any positive real number<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>≠</mo><mn>1</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] b S= log b T if and only if S=T.

For example,

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>If  </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log 2 (x−1)= log 2 (8),then x−1=8.

So, if<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>−</mo><mn>1</mn><mo>=</mo><mn>8</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]then we can solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex]and we get<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>9.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]To check, we can substitute<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>9</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]into the original equation:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log 2 ( 9−1 )= log 2 ( 8 )=3. In other words, when a logarithmic equation has the same base on each side, the arguments must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation with logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then we use the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the unknown.

For example, consider the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3x−2 )−log( 2 )=log( x+4 ). To solve this equation, we can use the rules of logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>:</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>log</mi><mo stretchy="false">(</mo><mn>3</mn><mi>x</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo><mo>−</mo><mi>log</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mi>log</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mn>4</mn><mo stretchy="false">)</mo></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]                log( 3x−2 2 )=log(x+4) Apply the quotient rule of logarithms.                        3x−2 2=x+4 Apply the one to one property of a logarithm.                        3x−2=2x+8 Multiply both sides of the equation by 2.                               x=10 Subtract 2x and add 2.

To check the result, substitute<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>10</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]into<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3x−2 )−log( 2 )=log( x+4 ).

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>log</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">(</mo><mn>10</mn><mo stretchy="false">)</mo><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo><mo>−</mo><mi>log</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mi>log</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mn>10</mn><mo stretchy="false">)</mo><mo>+</mo><mn>4</mn><mo stretchy="false">)</mo></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]            log(28)−log(2)=log(14)                          log( 28 2 )=log(14) The solution checks.
Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

For any algebraic expressions<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>T</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and any positive real number<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>b</mi><mo>≠</mo><mn>1</mn><mo>,</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] b S= log b T  if and only if  S=T

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an extraneous solution.

Given an equation containing logarithms, solve it using the one-to-one property.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log b S= log b T.
2. Use the one-to-one property to set the arguments equal.
3. Solve the resulting equation,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mo>=</mo><mi>T</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] for the unknown.
Solving an Equation Using the One-to-One Property of Logarithms

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ln</mi><mo stretchy="false">(</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 )=ln(2x+3).

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>          </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>ln</mi><mo stretchy="false">(</mo><msup/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] x 2 )=ln(2x+3)                         x 2 =2x+3 Use the one-to-one property of the logarithm.         x 2 −2x−3=0Get zero on one side before factoring.    (x−3)(x+1)=0 Factor using FOIL.                  x−3=0 or x+1=0If a product is zero, one of the factors must be zero.                         x=3 or x=−1 Solve for x.
Analysis

There are two solutions:<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>3</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>−1.</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]The solution<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mn>−1</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is negative, but it checks when substituted into the original equation because the argument of the logarithm functions is still positive.

Solve<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ln</mi><mo stretchy="false">(</mo><msup/></mrow></annotation-xml></semantics>[/itex] x 2 )=ln1.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]

# Solving Applied Problems Using Exponential and Logarithmic Equations

In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a radioactive substance to decay, called its half-life. [link] lists the half-life for several of the more common radioactive substances.

Substance Use Half-life
gallium-67 nuclear medicine 80 hours
cobalt-60 manufacturing 5.3 years
technetium-99m nuclear medicine 6 hours
americium-241 construction 432 years
carbon-14 archeological dating 5,715 years
uranium-235 atomic power 703,800,000 years

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] A 0 e ln(0.5) T t A(t)= A 0 e ln(0.5) t T A(t)= A 0 ( e ln(0.5) ) t T A(t)= A 0 ( 1 2 ) t T

where

• <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mi>A</mi></msub></mrow></annotation-xml></semantics>[/itex] 0  is the amount initially present
• <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>T</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the half-life of the substance
• <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the time period over which the substance is studied
• <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>y</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the amount of the substance present after time<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi></mrow></annotation-xml></semantics>[/itex]
Using the Formula for Radioactive Decay to Find the Quantity of a Substance

How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>         </mtext><mi>y</mi><mo>=</mo><mtext>1000</mtext><mi>e</mi><mfrac/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] ln(0.5) 703,800,000 t      900=1000 e ln(0.5) 703,800,000 t After 10% decays, 900 grams are left.       0.9= eln(0.5) 703,800,000 t Divide by 1000. ln(0.9)=ln( e ln(0.5) 703,800,000 t ) Take ln of both sides. ln(0.9)= ln(0.5)703,800,000 t ln( e M )=M           t=703,800,000× ln(0.9) ln(0.5) years Solve for t.           t≈106,979,777 years
Analysis

Ten percent of 1000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 grams.

How long will it take before twenty percent of our 1000-gram sample of uranium-235 has decayed?

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mo>=</mo><mn>703</mn><mo>,</mo><mn>800</mn><mo>,</mo><mn>000</mn><mo>×</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] ln(0.8) ln(0.5)  years ≈ 226,572,993 years.

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

# Key Equations

 One-to-one property for exponential functions For any algebraic expressions S [/itex]and T [/itex]and any positive real number b, [/itex]where   b[/itex] S = b T  if and only if S=T.[/itex] Definition of a logarithm For any algebraic expression S and positive real numbers b  [/itex]and c, [/itex]where b1,[/itex]   log[/itex] b (S)=c if and only if [/itex] b c =S. One-to-one property for logarithmic functions For any algebraic expressions S and T and any positive real number b, [/itex]where b1,[/itex]   log[/itex] b S= log b T if and only if S=T.[/itex]

# Key Concepts

• We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one another and solve for the unknown.
• When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents equal to one another and solve for the unknown. See [link].
• When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite each side of the equation as powers of the same base, then set the exponents equal to one another and solve for the unknown. See [link], [link], and [link].
• When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side. See [link].
• We can solve exponential equations with base<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>e</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex]by applying the natural logarithm of both sides because exponential and logarithmic functions are inverses of each other. See [link] and [link].
• After solving an exponential equation, check each solution in the original equation to find and eliminate any extraneous solutions. See [link].
• When given an equation of the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log b (S)=c,where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is an algebraic expression, we can use the definition of a logarithm to rewrite the equation as the equivalent exponential equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] b c =S,and solve for the unknown. See [link]and [link].
• We can also use graphing to solve equations with the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log b (S)=c. We graph both equations<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><msub/></mrow></annotation-xml></semantics>[/itex] log b (S) and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>c</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]on the same coordinate plane and identify the solution as the x-value of the intersecting point. See [link].
• When given an equation of the form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] log b S= log b T,where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>T</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]are algebraic expressions, we can use the one-to-one property of logarithms to solve the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>S</mi><mo>=</mo><mi>T</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]for the unknown. See [link].
• Combining the skills learned in this and previous sections, we can solve equations that model real world situations, whether the unknown is in an exponent or in the argument of a logarithm. See [link].

# Section Exercises

## Verbal

How can an exponential equation be solved?

Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.

When does an extraneous solution occur? How can an extraneous solution be recognized?

When can the one-to-one property of logarithms be used to solve an equation? When can it not be used?

The one-to-one property can be used if both sides of the equation can be rewritten as a single logarithm with the same base. If so, the arguments can be set equal to each other, and the resulting equation can be solved algebraically. The one-to-one property cannot be used when each side of the equation cannot be rewritten as a single logarithm with the same base.

## Algebraic

For the following exercises, use like bases to solve the exponential equation.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>4</mn></msup></mrow></annotation-xml></semantics>[/itex] −3v−2 = 4 −v

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>64</mn><mo>⋅</mo><msup/></mrow></annotation-xml></semantics>[/itex] 4 3x =16

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>3</mn></msup></mrow></annotation-xml></semantics>[/itex] 2x+1 ⋅ 3 x =243

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>2</mn></msup></mrow></annotation-xml></semantics>[/itex] −3n ⋅ 1 4 = 2 n+2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>n</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>625</mn><mo>⋅</mo><msup/></mrow></annotation-xml></semantics>[/itex] 5 3x+3 =125

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><msup><mrow><mn>36</mn></mrow></msup></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3b 36 2b = 216 2−b

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>b</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 6 5

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mrow><mrow><mo>(</mo></mrow></mrow></msup></mrow></annotation-xml></semantics>[/itex] 1 64 ) 3n ⋅8= 2 6

For the following exercises, use logarithms to solve.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>9</mn></msup></mrow></annotation-xml></semantics>[/itex] x−10 =1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>10</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>2</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 6x =13

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>e</mi></msup></mrow></annotation-xml></semantics>[/itex] r+10 −10=−42

No solution

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>2</mn><mo>⋅</mo><msup/></mrow></annotation-xml></semantics>[/itex] 10 9a =29

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>8</mn><mo>⋅</mo><msup/></mrow></annotation-xml></semantics>[/itex] 10 p+7 −7=−24

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>p</mi><mo>=</mo><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 17 8 )−7

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>7</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 3n−5 +5=−89

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>e</mi></msup></mrow></annotation-xml></semantics>[/itex] −3k +6=44

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] ln( 38 ) 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>5</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 9x−8 −8=−62

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>6</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 9x+8 +2=−74

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] ln( 38 3 )−8 9

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>2</mn></msup></mrow></annotation-xml></semantics>[/itex] x+1 = 5 2x−1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>e</mi></msup></mrow></annotation-xml></semantics>[/itex] 2x − e x −132=0

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mi>ln</mi><mn>12</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>7</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 8x+8 −5=−95

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>10</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 8x+3 +2=8

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] ln( 3 5 )−3 8

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>4</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 3x+3 −7=53

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>8</mn><msup/></mrow></annotation-xml></semantics>[/itex] e −5x−2 −4=−90

no solution

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>3</mn></msup></mrow></annotation-xml></semantics>[/itex] 2x+1 = 7 x−2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>e</mi></msup></mrow></annotation-xml></semantics>[/itex] 2x − e x −6=0

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>3</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 3−3x +6=−31

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 1 100 )=−2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mrow><mn>10</mn></mrow></msup></mrow></annotation-xml></semantics>[/itex] −2 = 1 100

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 324 ( 18 )= 1 2

For the following exercises, use the definition of a logarithm to solve the equation.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>5</mn><msub/></mrow></annotation-xml></semantics>[/itex] log 7 n=10

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>n</mi><mo>=</mo><mn>49</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>8</mn><msub/></mrow></annotation-xml></semantics>[/itex] log 9 x=16

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>4</mn><mo>+</mo><msub/></mrow></annotation-xml></semantics>[/itex] log 2 ( 9k )=2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>k</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 36

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>2</mn><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 8n+4 )+6=10

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>10</mn><mo>−</mo><mn>4</mn><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 9−8x )=6

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 9−e 8

For the following exercises, use the one-to-one property of logarithms to solve.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 10−3x )=ln( −4x )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 13 ( 5n−2 )= log 13 ( 8−5n )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x+3 )−log( x )=log( 74 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −3x )=ln( x 2 −6x )

No solution

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 4 ( 6−m )= log 4 3m

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x−2 )−ln( x )=ln( 54 )

No solution

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 9 ( 2 n 2 −14n )= log 9 ( −45+ n 2 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 2 −10 )+ln( 9 )=ln( 10 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mo>±</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 10 3

For the following exercises, solve each equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mn>12</mn><mo stretchy="false">)</mo><mo>=</mo><mi>log</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>log</mi><mo stretchy="false">(</mo><mn>12</mn><mo stretchy="false">)</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>ln</mi><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mn>3</mn><mo stretchy="false">)</mo><mo>=</mo><mi>ln</mi><mo stretchy="false">(</mo><mn>7</mn><mi>x</mi><mo stretchy="false">)</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>10</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 2 (7x+6)=3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 7 )+ln( 2−4 x 2 )=ln( 14 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 8 ( x+6 )− log 8 ( x )= log 8 ( 58 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3 )−ln( 3−3x )=ln( 4 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 3 4

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 3 ( 3x )− log 3 ( 6 )= log 3 ( 77 )

## Graphical

For the following exercises, solve the equation for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex]if there is a solution. Then graph both sides of the equation, and observe the point of intersection (if it exists) to verify the solution.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 9 ( x )−5=−4

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mn>9</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 3 ( x )+3=2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3x )=2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] e 2 3 ≈2.5

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x−5 )=1

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 4 )+log( −5x )=2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mo>−</mo><mn>5</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mn>7</mn><mo>+</mo><msub/></mrow></annotation-xml></semantics>[/itex] log 3 ( 4−x )=−6

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 4x−10 )−6=−5

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] e+10 4 ≈3.2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 4−2x )=log( −4x )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 11 ( −2 x 2 −7x )= log 11 ( x−2 )

No solution

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 2x+9 )=ln( −5x )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msub><mrow><mi>log</mi></mrow></msub></mrow></annotation-xml></semantics>[/itex] 9 ( 3−x )= log 9 ( 4x−8 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 11 5 ≈2.2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x 2 +13 )=log( 7x+3 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mn>3</mn></mfrac></mrow></annotation-xml></semantics>[/itex] log 2 ( 10 ) −log( x−9 )=log( 44 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 101 11 ≈9.2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] x )−ln( x+3 )=ln( 6 )

For the following exercises, solve for the indicated value, and graph the situation showing the solution point.

An account with an initial deposit of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mtext>$6,500</mtext><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]earns<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>7.25</mn><mi>%</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]annual interest, compounded continuously. How much will the account be worth after 20 years? about<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>$</mi><mn>27</mn><mo>,</mo><mn>710.24</mn></mrow></annotation-xml></semantics>[/itex]

The formula for measuring sound intensity in decibels<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>D</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is defined by the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>D</mi><mo>=</mo><mn>10</mn><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] I I 0 ),where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>I</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the intensity of the sound in watts per square meter and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] I 0 = 10 −12  is the lowest level of sound that the average person can hear. How many decibels are emitted from a jet plane with a sound intensity of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>8.3</mn><mo>⋅</mo><msup/></mrow></annotation-xml></semantics>[/itex] 10 2  watts per square meter?

The population of a small town is modeled by the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>P</mi><mo>=</mo><mn>1650</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 0.5t  where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is measured in years. In approximately how many years will the town’s population reach<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mtext>20,000?</mtext></mrow></annotation-xml></semantics>[/itex]

## Technology

For the following exercises, solve each equation by rewriting the exponential expression using the indicated logarithm. Then use a calculator to approximate<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>x</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to 3 decimal places.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>1000</mn><msup/></mrow></annotation-xml></semantics>[/itex] ( 1.03 ) t =5000 using the common log.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mi>e</mi></msup></mrow></annotation-xml></semantics>[/itex] 5x =17 using the natural log

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mi>ln</mi><mo stretchy="false">(</mo><mn>17</mn><mo stretchy="false">)</mo></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 5 ≈0.567

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>3</mn><msup/></mrow></annotation-xml></semantics>[/itex] ( 1.04 ) 3t =8 using the common log

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><msup><mn>3</mn></msup></mrow></annotation-xml></semantics>[/itex] 4x−5 =38 using the common log

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] log( 38 )+5log( 3 )    4log( 3 ) ≈2.078

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>50</mn><msup/></mrow></annotation-xml></semantics>[/itex] e −0.12t =10 using the natural log

For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to the nearest ten-thousandth.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>7</mn><msup/></mrow></annotation-xml></semantics>[/itex] e 3x−5 +7.9=47

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>≈</mo><mn>2.2401</mn></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 3 )+ln( 4.4x+6.8 )=2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>log</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] −0.7x−9 )=1+5log( 5 )

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi><mo>≈</mo><mo>−</mo><mtext>44655</mtext><mo>.</mo><mtext>7143</mtext></mrow></annotation-xml></semantics>[/itex]

Atmospheric pressure<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>P</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in pounds per square inch is represented by the formula<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>P</mi><mo>=</mo><mn>14.7</mn><msup/></mrow></annotation-xml></semantics>[/itex] e −0.21x , where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>x</mi></mrow></annotation-xml></semantics>[/itex] is the number of miles above sea level. To the nearest foot, how high is the peak of a mountain with an atmospheric pressure of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>8.369</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]pounds per square inch? (Hint: there are 5280 feet in a mile)

The magnitude M of an earthquake is represented by the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>M</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 2 3 log( E E 0 ) where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>E</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the amount of energy released by the earthquake in joules and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] E 0 = 10 4.4  is the assigned minimal measure released by an earthquake. To the nearest hundredth, what would the magnitude be of an earthquake releasing<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>1.4</mn><mo>⋅</mo><msup/></mrow></annotation-xml></semantics>[/itex] 10 13  joules of energy?

## Extensions

Use the definition of a logarithm along with the one-to-one property of logarithms to prove that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] b log b x =x.

Recall the formula for continually compounding interest,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>y</mi><mo>=</mo><mi>A</mi><msup/></mrow></annotation-xml></semantics>[/itex] e kt . Use the definition of a logarithm along with properties of logarithms to solve the formula for time<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext>  </mtext></mrow></annotation-xml></semantics>[/itex]such that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><mi>t</mi><mtext>  </mtext></mrow></annotation-xml></semantics>[/itex]is equal to a single logarithm.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mo>=</mo><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] ( y A ) 1 k )

Recall the compound interest formula<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>A</mi><mo>=</mo><mi>a</mi><msup/></mrow></annotation-xml></semantics>[/itex] ( 1+ r k ) kt . Use the definition of a logarithm along with properties of logarithms to solve the formula for time<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

Newton’s Law of Cooling states that the temperature<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>T</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]of an object at any time t can be described by the equation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>T</mi><mo>=</mo><msub/></mrow></annotation-xml></semantics>[/itex] T s +( T 0 − T s ) e −kt , where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msub/></mrow></annotation-xml></semantics>[/itex] T s  is the temperature of the surrounding environment,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><msub><mi>T</mi></msub></mrow></annotation-xml></semantics>[/itex] 0  is the initial temperature of the object, and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><mi>k</mi><mtext/></mrow></annotation-xml></semantics>[/itex]is the cooling rate. Use the definition of a logarithm along with properties of logarithms to solve the formula for time<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]such that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is equal to a single logarithm.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi><mo>=</mo><mi>ln</mi><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] ( T− T s T 0 − T s ) −  1 k )

## Glossary

extraneous solution
a solution introduced while solving an equation that does not satisfy the conditions of the original equation