For the exercises 1-5 assume \(\alpha \) is opposite side \(a\), \(\beta \) is opposite side \(b\), and \(\gamma \) is opposite side \(c\). Solve each triangle, if possible. Round each answer to the nearest tenth.
1) \(\beta =50^{\circ}, a=105, b=45\)
Answer
Not possible
2) \(\alpha =43.1^{\circ}, a=184.2, b=242.8\)
3) Solve the triangle.
Answer
\(C=120^{\circ}, a=23.1, c=34.1\)
4) Find the area of the triangle.
5) A pilot is flying over a straight Highway. He determines the angles of depression to two mile posts \(2.1\) km apart to be \(25^{\circ}\) and \(49^{\circ}\), as shown in the figure below. Find the distance of the plane from point \(A\) and the elevation of the plane.
Answer
distance of the plane from point \(A:2.2\) km, elevation of the plane: \(1.6\) km
8.2: Non-right Triangles - Law of Cosines
1) Solve the triangle, rounding to the nearest tenth, assuming \(\alpha \) is opposite side \(a\), \(\beta \) is opposite side \(b\), and \(\gamma \) s opposite side \(c: a=4, b=6,c=8\).
2) Solve the triangle in the Figure below, rounding to the nearest tenth.
Answer
\(B=71.0^{\circ},C=55.0^{\circ},a=12.8\)
3) Find the area of a triangle with sides of length \(8.3\), \(6.6\), and \(9.1\).
4) To find the distance between two cities, a satellite calculates the distances and angle shown in the Figure below (not to scale). Find the distance between the cities. Round answers to the nearest tenth.
Answer
\(40.6\) km
8.3: Polar Coordinates
1) Plot the point with polar coordinates \(\left ( 3,\dfrac{\pi }{6} \right )\).
2) Plot the point with polar coordinates \(\left ( 5,\dfrac{-2\pi }{3} \right )\).
3) Parameterize (write a parametric equation for) each Cartesian equation by using \(x(t)=a\cos t\) and \(y(t)=b\sin t\) for \(\dfrac{x^2}{25}+\dfrac{y^2}{16}=1\).
4) Parameterize the line from \((-2,3)\) to \((4,7)\) so that the line is at \((-2,3)\) at \(t=0\) and \((4,7)\) at \(t=1\).
For the exercises 1-, make a table of values for each set of parametric equations, graph the equations, and include an orientation; then write the Cartesian equation.
4) A ball is launched with an initial velocity of \(80\) feet per second at an angle of \(40^{\circ}\) to the horizontal. The ball is released at a height of \(4\) feet above the ground.
The ball is 14 feet high and 184 feet from where it was launched.
\(3.3\) seconds
8.8: Vectors
For the exercises 1-2, determine whether the two vectors, \(\vecs u\) and \(\vecs v\), are equal, where \(\vecs u\) has an initial point \(P_1\) and a terminal point \(P_2\), and \(\vecs v\) has an initial point \(P_3\) and a terminal point \(P_4\).
For the exercises 3-4, use the vectors \(\vecs u=2\hat{\mathbf{i}}-\hat{\mathbf{j}}\), \(\vecs v=4\hat{\mathbf{i}}-3\hat{\mathbf{j}}\), and \(\vecs w=-2\hat{\mathbf{i}}+5\hat{\mathbf{j}}\) to evaluate the expression.
3) \( \vecs u-\vecs v \)
4) \( 2\vecs v-\vecs u+\vecs w \)
Answer
\(4\hat{\mathbf{i}}\)
For the exercises 5-6, find a unit vector in the same direction as the given vector.
For the exercises 7-11, calculate \(\vecs u\cdot \vecs v\)
7) \(\vecs u=-2\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\vecs v=3\hat{\mathbf{i}}+7\hat{\mathbf{j}}\)
8) \(\vecs u=\hat{\mathbf{i}}+4\hat{\mathbf{j}}\) and \(\vecs v=4\hat{\mathbf{i}}+3\hat{\mathbf{j}}\)
Answer
\(16\)
9) Given \(\vecs v=\left \langle -3,4 \right \rangle\) draw \(\vecs v\), \(2\vecs v\), and \(\dfrac{1}{2}\vecs v\) .
10) Given the vectors shown in the Figure below, sketch \(\vecs u + \vecs v\), \(\vecs u − \vecs v\) and \(3\vecs v\) .
Answer
11) Given initial point \(P_1=(3,2)\) and terminal point \(P_2=(-5,-1)\),write the vector \(\vecs v\) in terms of \(\hat{\mathbf{i}}\) and \(\hat{\mathbf{j}}\). Draw the points and the vector on the graph.
Practice Test
1) Assume \(\alpha \) is opposite side \(a\), \(\beta \) is opposite side \(b\), and \(\gamma \) is opposite side \(c\). Solve the triangle, if possible, and round each answer to the nearest tenth, given \(\beta =68^{\circ},b=21,c=16\).
2) Find the area of the triangle in the Figure below. Round each answer to the nearest tenth.
3) A pilot flies in a straight path for \(2\) hours. He then makes a course correction, heading \(15^{\circ}\) to the right of his original course, and flies \(1\) hour in the new direction. If he maintains a constant speed of \(575\) miles per hour, how far is he from his starting position?
Answer
\(1712\) miles
4) Convert \((2,2)\) to polar coordinates, and then plot the point.
18) Plot the complex number \(-5-i\) in the complex plane.
19) Eliminate the parameter \(t\) to rewrite the following parametric equations as a Cartesian equation: \(\begin{cases} & x(t)= t+1\\ & y(t)= 2t^2 \end{cases}\)
Answer
\(y=2(x-1)^2\)
20) Parameterize (write a parametric equation for) the following Cartesian equation by using \(x(t)=a\cos t\) and \(y(t)=b\sin t : \dfrac{x^2}{36}+\dfrac{y^2}{100}=1\)
21) Graph the set of parametric equations and find the Cartesian equation: \(\begin{cases} & x(t)= -2\sin t\\ & y(t)= 5\cos t \end{cases}\)
Answer
22) A ball is launched with an initial velocity of \(95\) feet per second at an angle of \(52^{\circ}\) to the horizontal. The ball is released at a height of \(3.5\) feet above the ground.
Where is the ball after \(2\) seconds?
How long is the ball in the air?
For the exercises 23-26, use the vectors \(\vecs u = \hat{\mathbf{i}} − 3\hat{\mathbf{j}}\) and \(\vecs v = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}\).
23) Find \(2\vecs u − 3\vecs v\) .
Answer
\(-4\hat{\mathbf{i}}-15\hat{\mathbf{j}}\)
24) Calculate \(\vecs u\cdot \vecs v\) .
25) Find a unit vector in the same direction as \(\vecs v\).