Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

1.5 Transformation of Functions

Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or solve it. When building models, it is often helpful to build off of existing formulas or models. Knowing the basic graphs of your tool-kit functions can help you solve problems by being able to model new behavior by adapting something you already know. Unfortunately, the models and existing formulas we know are not always exactly the same as the ones presented in the problems we face.

Fortunately, there are systematic ways to shift, stretch, compress, flip and combine functions to help them become better models for the problems we are trying to solve. We can transform what we already know into what we need, hence the name, “Transformation of functions.” When we have a story problem, formula, graph, or table, we can then transform that function in a variety of ways to form new functions.

Shifts

Example 1

To regulate temperature in our green building, air flow vents near the roof open and close throughout the day to allow warm air to escape. The graph below shows the open vents \(V\) (in square feet) throughout the day, t in hours after midnight. During the summer, the facilities staff decides to try to better regulate temperature by increasing the amount of open vents by 20 square feet throughout the day.  Sketch a graph of this new function.

Chapter 1 - Copy_Page_62_Image_0001.jpg

We can sketch a graph of this new function by adding 20 to each of the output values of the original function.  This will have the effect of shifting the graph up.

Chapter 1 - Copy_Page_63_Image_0001.jpg

Notice that in the second graph, for each input value, the output value has increased by twenty, so if we call the new function \(S(t)\), we could write \(S(t) = (t) +20\). 

Note that this notation tells us that for any value of \(t\), \(S(t)\) can be found by evaluating the \(V\) function at the same input, then adding twenty to the result. This defines \(S\) as a transformation of the function \(V\), in this case a vertical shift up 20 units. 

Notice that with a vertical shift the input values stay the same and only the output values change.

Definition: Vertical Shifts

Given a function f(x), if we define a new function \(g(x)\) as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image008.gif, where k is a constant, then \(g(x)\) is a vertical shift of the function f(x), where all the output values have been increased by k. 

  • If k is positive, then the graph will shift up
  • If k is negative, then the graph will shift down
Example 2

A function f(x) is given as a table below.  Create a table for the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image010.gif

Text Box: x2468
f(x)13711

 

 

 

The formula File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image010.gif tells us that we can find the output values of the \(g\) function by subtracting 3 from the output values of the f function.  For example,

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image013.gif                     is found from the given table

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image010.gif         is our given transformation

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image015.gif

Subtracting 3 from each \(f(x)\) value, we can complete a table of values for \(g(x)\)

Text Box: x2468
g(x)-2048

 

 

 

As with the earlier vertical shift, notice the input values stay the same and only the output values change.

Try it Now: 1
The function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image018.gif gives the height h of a ball (in meters) thrown upwards from the ground after t seconds.  Suppose the ball was instead thrown from the top of a 10 meter building. Relate this new height function b(t) to h(t), then find a formula for \(b(t)\).

The vertical shift is a change to the output, or outside, of the function. We will now look at how changes to input, on the inside of the function, change its graph and meaning.

Example 3

Returning to our building air flow example from the beginning of the section, suppose that in Fall, the facilities staff decides that the original venting plan starts too late, and they want to move the entire venting program to start two hours earlier. Sketch a graph of the new function.

\(V(t)\) = the original venting plan                                \(F(t)\) = starting 2 hrs sooner

Description: Description: Graphs          Description: Description: Graphs

 

In the new graph, which we can call F(t), at each time, the air flow is the same as the original function \(V(t)\) was two hours later.  For example, in the original function V, the air flow starts to change at 8 am, while for the function \(F(t)\) the air flow starts to change at 6 am. The comparable function values are File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image023.gif.

Notice also that the vents first opened to 220 sq. ft. at 10 a.m. under the original plan, while under the new plan the vents reach 220 sq. ft. at 8 a.m., so File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image025.gif.

In both cases we see that since \(F(t)\) starts 2 hours sooner, the same output values are reached when, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image027.gif

Note that File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image029.gif had the affect of shifting the graph to the left.

Horizontal changes or “inside changes” affect the domain of a function (the input) instead of the range and often seem counterintuitive. The new function \(F(t)\) uses the same outputs as V(t), but matches those outputs to inputs two hours earlier than those of V(t). Said another way, we must add 2 hours to the input of \(V\) to find the corresponding output for F:  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image027.gif.

Definition: Horizontal Shifts

Given a function \(f(x)\), if we define a new function \(g(x)\) as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image031.gif, where \(k\) is a constant, then \(g(x)\) is a horizontal shift of the function \(f(x)\)

  • If k is positive, then the graph will shift left
  • If k is negative, then the graph will shift right
Example 4

A function f(x) is given as a table below.  Create a table for the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif

Text Box: x2468
f(x)13711

 

 

 

The formula File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif tells us that the output values of g are the same as the output value of \(f\) with an input value three smaller.  For example, we know thatFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image013.gif.  To get the same output from the \(g\) function, we will need an input value that is 3-fold larger: We input a value that is three larger for \(g(x)\) because the function takes three away before evaluating the function f.

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image037.gif

Text Box: x57911
g(x)13711

 

 

 

The result is that the function \(g(x)\) has been shifted to the right by 3. Notice the output values for \(g(x)\) remain the same as the output values for \(f(x)\) in the chart, but the corresponding input values, \(x\), have shifted to the right by 3:  2 shifted to 5, 4 shifted to 7, 6 shifted to 9 and 8 shifted to 11. 

Example 5

The graph shown is a transformation of the toolkit function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif.  Relate this new function \(g(x)\) to \(f(x)\), and then find a formula for \(g(x)\).

SOLUTION

Notice that the graph looks almost identical in shape to the File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif function, but the \(x\) values are shifted to the right two units.  The vertex used to be at (0, 0) but now the vertex is at (2, 0). The graph is the basic quadratic function shifted two to the right, so

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image044.gif

Notice how we must input the value \(x = 2\), to get the output value \(y = 0\);  the \(x\) values must be two units larger, because of the shift to the right by 2 units.

We can then use the definition of the \(f(x)\) function to write a formula for \(g(x)\) by evaluating File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image046.gif:

Since File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif and  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image044.gif

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image048.gif

If you find yourself having trouble determining whether the shift is +2 or -2, it might help to consider a single point on the graph.  For a quadratic, looking at the bottom-most point is convenient.  In the original function, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image050.gif.  In our shifted function, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image052.gif.  To obtain the output value of 0 from the f function, we need to decide whether a +2 or -2 will work to satisfy File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image054.gif.  For this to work, we will need to subtract 2 from our input values.

When thinking about horizontal and vertical shifts, it is good to keep in mind that vertical shifts are affecting the output values of the function, while horizontal shifts are affecting the input values of the function.

Example  6

The function G(m) gives the number of gallons of gas required to drive \(m\) miles. Interpret File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image056.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image058.gif

SOLUTION

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image056.gif is adding 10 to the output, gallons. So this is 10 gallons of gas more than is required to drive \(m\) miles. So this is the gas required to drive \(m\) miles, plus another 10 gallons of gas.

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image058.gif is adding 10 to the input, miles. So this is the number of gallons of gas required to drive 10 miles more than m miles.

Try it Now: 2
Given the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image060.gif  graph the original function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gifand the transformation File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image064.gif.
  1. Is this a horizontal or a vertical change?
  2. Which way is the graph shifted and by how many units?
  3. Graph \(f(x)\) and \(g(x)\) on the same axes.

Now that we have two transformations, we can combine them together.

Remember:

  • Vertical Shifts are outside changes that affect the output (vertical) axis values shifting the transformed function up or down.
  • Horizontal Shifts are inside changes that affect the input (horizontal) axis values shifting the transformed function left or right.

 

Example 7

Given File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image066.gif, sketch a graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image068.gif.

SOLUTION

The function \(f\)  is our toolkit absolute value function.  We know that this graph has a V shape, with the point at the origin. The graph of \(h\) has transformed \(f\)  in two ways:  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image070.gif is a change on the inside of the function, giving a horizontal shift left by 1, then the subtraction by 3 in File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image072.gif is a change to the outside of the function, giving a vertical shift down by 3.  Transforming the graph gives

Description: Description: Graphs

We could also find a formula for this transformation by evaluating the expression for h(x):

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image076.gif

Example 8

Write a formula for the graph shown, a transformation of the toolkit square root function.

SOLUTION

The graph of the toolkit function starts at the origin, so this graph has been shifted 1 to the right, and up 2. In function notation, we could write that as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image080.gif.  Using the formula for the square root function we can write

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image082.gif

Note that this transformation has changed the domain and range of the function. This new graph has domain File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image084.gif and range File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image086.gif.

Reflections

Another transformation that can be applied to a function is a reflection over the horizontal or vertical axis.

 

Example 9

Reflect the graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image088.gif both vertically and horizontally.

 

Reflecting the graph vertically, each output value will be reflected over the horizontal t axis:

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image089.gifDescription: Description: Graphs           Description: Description: Graphs

Since each output value is the opposite of the original output value, we can write

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image095.gif

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image097.gif

Notice this is an outside change or vertical change that affects the output \(s(t)\) values so the negative sign belongs outside of the function.

Reflecting horizontally, each input value will be reflected over the vertical axis:

Description: Description: Graphs

Since each input value is the opposite of the original input value, we can write

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image101.gif

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image103.gif

Notice this is an inside change or horizontal change that affects the input values so the negative sign is on the inside of the function.

Note that these transformations can affect the domain and range of the functions.  While the original square root function has domain File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image105.gif and range File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image105.gif, the vertical reflection gives the V(t) function the range File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image107.gif, and the horizontal reflection gives the \(H(t)\) function the domain File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image107.gif.

Definition: Reflections

Given a function \(f(x)\), if we define a new function \(g(x)\) as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image109.gif, then \(g(x)\) is a vertical reflection of the function \(f(x)\), sometimes called a reflection about the x-axis

If we define a new function \(g(x)\) as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image111.gif, then \(g(x)\) is a horizontal reflection of the function \(f(x)\), sometimes called a reflection about the y-axis

Example 10

A function f(x) is given as a table below.  Create a table for the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image109.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image114.gif

Text Box: x2468
f(x)13711

 

 

For \(g(x)\), this is a vertical reflection, so the x values stay the same and each output value will be the opposite of the original output value:

Text Box: x

 

 

 

For \(h(x)\), this is a horizontal reflection, and each input value will be the opposite of the original input value and the \(h(x)\) values stay the same as the \(f(x)\) values:

Text Box: x-2-4-6-8
h(x)13711

 

Example 11

A common model for learning has an equation similar to File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image120.gif, where k is the percentage of mastery that can be achieved after t practice sessions.  This is a transformation of the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image122.gif shown here.  Sketch a graph of k(t).

This equation combines three transformations into one equation. 

A horizontal reflection:        File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image124.gif                 combined with

A vertical reflection:             File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image126.gif            combined with

A vertical shift up 1:             File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image128.gif

 

We can sketch a graph by applying these transformations one at a time to the original function:

The original graph                 Horizontally reflected             Then vertically reflected

Description: Description: Graphs  Description: Description: Graphs Description: Description: Graphs

Then, after shifting up 1, we get the final graph:

Description: Description: Graphs  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image137.gif.

 

Note:  As a model for learning, this function would be limited to a domain of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image139.gif, with corresponding range File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image141.gif.

Try it Now: 3
Given the toolkit function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif, graph \(g(x) = -f(x)\) and \(h(x) = f(-x)\).

Do you notice anything surprising?  Discuss your findings with a friend.

Some functions exhibit symmetry, in which reflections result in the original graph. For example, reflecting the toolkit functions File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif or File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image066.gif will result in the original graph.  We call these types of graphs symmetric about the y-axis.

 

Likewise, if the graphs of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image145.gif or File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image147.gif were reflected over both axes, the result would be the original graph:

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image145.gif                                File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image149.gif                                     File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image151.gif

Description: Description: Graphs  Description: Description: Graphs   Description: Description: Graphs

 

We call these graphs symmetric about the origin.

Definition: Even and Odd Functions

A function is called an even function if File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image158.gif

The graph of an even function is symmetric about the vertical axis

 

A function is called an odd function if File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image160.gif

The graph of an odd function is symmetric about the origin

Note:  A function can be neither even nor odd if it does not exhibit either symmetry. For example, the File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image162.gif function is neither even nor odd.

Example 12

Is the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image164.gif even, odd, or neither?

Solution

Without looking at a graph, we can determine this by finding formulas for the reflections, and seeing if they return us to the original function:

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image166.gif

This does not return us to the original function, so this function is not even.  We can now try also applying a horizontal reflection:

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image168.gif

Since File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image170.gif, this is an odd function

Stretches and Compressions

With shifts, we saw the effect of adding or subtracting to the inputs or outputs of a function. We now explore the effects of multiplying the inputs or outputs. Remember, we can transform the inside (input values) of a function or we can transform the outside (output values) of a function. Each change has a specific effect that can be seen graphically.

Example 13

A function \(P(t)\) models the growth of a population of fruit flies. The growth is shown below. 

Description: Description: Graphs

A scientist is comparing this to another population, \(Q\), that grows the same way, but starts twice as large.  Sketch a graph of this population.

Since the population is always twice as large, the new population’s output values are always twice the original function output values. Graphically, this would look like

Description: Description: Graphs

Symbolically,

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image176.gif

This means that for any input \(t\), the value of the \(Q\) function is twice the value of the P function.  Notice the effect on the graph is a vertical stretching of the graph, where every point doubles its distance from the horizontal axis. The input values, \(t\), stay the same while the output values are twice as large as before.

Definition: Vertical Stretch/Compressions

Given a function f(x), if we define a new function g(x) as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image178.gif, where \(k\) is a constant then \(g(x)\) is a vertical stretch or compressionof the function \(f(x)\).

  • If \(k > 1\), then the graph will be stretched
  • If \(0< k < 1\), then the graph will be compressed
  • If \(k < 0\), then there will be combination of a vertical stretch or compression with a vertical reflection
Example 14

A function f(x) is given as a table below.  Create a table for the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image180.gif

Text Box: x2468
f(x)13711

 

 

 

The formula File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image180.gif tells us that the output values of \(g\) are half of the output values of \(f\) with the same inputs. For example, we know thatFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image183.gif.  Then File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image185.gif

Text Box: x2468
g(x)1/23/27/211/2

 

 

 

The result is that the function \(g(x)\) has been compressed vertically by ½. Each output value has been cut in half, so the graph would now be half the original height.

Example 15

The graph to the right is a transformation of the toolkit function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image190.gif. Relate this new function \(g(x)\) to \(f(x)\), then find a formula for \(g(x)\).

SOLUTION

When trying to determine a vertical stretch or shift, it is helpful to look for a point on the graph that is relatively clear. In this graph, it appears that File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image192.gif.  With the basic cubic function at the same input, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image194.gif.  Based on that, it appears that the outputs of g are ¼ the outputs of the function f, since File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image196.gif.  From this we can fairly safely conclude that:

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image198.gif

We can write a formula for \(g\) by using the definition of the function \(f\)

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image200.gif

Now we consider changes to the inside of a function.

Example 16

Returning to the fruit fly population we looked at earlier, suppose the scientist is now comparing it to a population that progresses through its lifespan twice as fast as the original population.  In other words, this new population, \(R\), will progress in 1 hour the same amount the original population did in 2 hours, and in 2 hours, will progress as much as the original population did in 4 hours.  Sketch a graph of this population.

SOLUTION

Symbolically, we could write

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image202.gif

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image204.gif, and in general,

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image206.gif

Graphing this,

Original population, P(t)                               Transformed, R(t)

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image207.jpg       Description: Description: Graphs

Note the effect on the graph is a horizontal compression, where all input values are half their original distance from the vertical axis.

Definition: Horizontal Stretch/Compression

Given a function \(f(x)\), if we define a new function \(g(x)\) as , where \(k\) is a constant then \(g(x)\) is a horizontal stretch or compression of the function \(f(x)\).

  • If \(k > 1\), then the graph will be compressed by
  • If \(0< k < 1\), then the graph will be stretched by
  • If \(k < 0\), then there will be combination of a horizontal stretch or compression with a horizontal reflection.
Example 17

A function f(x) is given as a table below.  Create a table for the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image216.gif

Text Box: x2468
f(x)13711

 

 

 

The formula File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image216.gif tells us that the output values for g are the same as the output values for the function f at an input half the size.  Notice that we don’t have enough information to determine File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image219.gifsince File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image221.gif, and we do not have a value for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image223.gif in our table.  Our input values to g will need to be twice as large to get inputs for f that we can evaluate.  For example, we can determine File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image225.gifsince File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image227.gif.  

Text Box: x481216
g(x)13711

 

 

 

Since each input value has been doubled, the result is that the function \(g(x)\) has been stretched horizontally by 2. 

Example 18

Two graphs are shown below.  Relate the function \(g(x)\) to \(f(x)\)

f(x)                                                                g(x)

Description: Description: Graphs     Description: Description: Graphs

The graph of g(x) looks like the graph of f(x) horizontally compressed. Since f(x) ends at (6,4) and g(x) ends at (2,4) we can see that the x values have been compressed by 1/3, because 6(1/3) = 2. We might also notice that File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image234.gif, and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image236.gif.  Either way, we can describe this relationship as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image238.gif.  This is a horizontal compression by 1/3.

Notice that the coefficient needed for a horizontal stretch or compression is the reciprocal of the stretch or compression.  So to stretch the graph horizontally by 4, we need a coefficient of 1/4 in our function: File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image240.gif.  This means the input values must be four times larger to produce the same result, requiring the input to be larger, causing the horizontal stretching.

Try it Now: 4

Write a formula for the toolkit square root function horizontally stretched by three.

It is useful to note that for most toolkit functions, a horizontal stretch or vertical stretch can be represented in other ways. For example, a horizontal compression of the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image242.gif by ½ would result in a new function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image244.gif, but this can also be written as File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image246.gif, a vertical stretch of \(f(x)\) by 4. When writing a formula for a transformed toolkit, we only need to find one transformation that would produce the graph.

Combining Transformations

When combining transformations, it is very important to consider the order of the transformations. For example, vertically shifting by 3 and then vertically stretching by 2 does not create the same graph as vertically stretching by 2 and then vertically shifting by 3. 

When we see an expression like File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image248.gif, which transformation should we start with? The answer here follows nicely from order of operations, for outside transformations. Given the output value of f(x), we first multiply by 2, causing the vertical stretch, then add 3, causing the vertical shift.  (Multiplication before Addition)

Combining Vertical Transformations

When combining vertical transformationswritten in the form File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image250.gif, first vertically stretch by \(a\), then vertically shift by \(k\).

Horizontal transformations are a little trickier to think about. When we write File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image252.giffor example, we have to think about how the inputs to the g function relate to the inputs to the f function.  Suppose we know File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image254.gif. What input to g would produce that output?  In other words, what value of x will allow File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image256.gif?  We would need File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image258.gif.  To solve for x, we would first subtract 3, resulting in horizontal shift, then divide by 2, causing a horizontal compression. 

Combining Horizontal Transformations

When combining horizontal transformations written in the formFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image260.gif, first horizontally shift by p, then horizontally stretch by 1/b.

This format ends up being very difficult to work with, since it is usually much easier to horizontally stretch a graph before shifting.  We can work around this by factoring inside the function.

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image260.gif= File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image262.gif

Factoring in this way allows us to horizontally stretch first, then shift horizontally.

Combining Horizontal Transformations (Factored Form)

When combining horizontal transformations written in the form File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image264.gif, first horizontally stretch by 1/b, then horizontally shift by h.

Independence of Horizontal and Vertical Transformations

Horizontal and vertical transformations are independent.  It does not matter whether horizontal or vertical transformations are done first.

Example 19

Given the table of values for the function f(x) below, create a table of values for the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image266.gif

Text Box: x6121824
f(x)10141517

 

 

 

There are 3 steps to this transformation and we will work from the inside out.  Starting with the horizontal transformations, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image269.gif is a horizontal compression by 1/3, which means we multiply each x value by 1/3.

Text Box: x2468
 
10141517

 

 

Looking now to the vertical transformations, we start with the vertical stretch, which will multiply the output values by 2.  We apply this to the previous transformation.

Text Box: x2468
 
20283034

 

 

 

Finally, we can apply the vertical shift, which will add 1 to all the output values.

Text Box: x2468
 
21293135

 

Example 20

Using the graph of \(f(x)\) below, sketch a graph of  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image277.gif

Description: Description: Graphs

To make things simpler, we’ll start by factoring out the inside of the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image281.gif

By factoring the inside, we can first horizontally stretch by 2, as indicated by the ½ on the inside of the function.  Remember twice the size of 0 is still 0, so the point (0,2) remains at (0,2) while the point (2,0) will stretch to (4,0).

Next, we horizontally shift left by 2 units, as indicated by the x+2.

Last, we vertically shift down by 3 to complete our sketch, as indicated by the -3 on the outside of the function.

Horizontal stretch by 2         Horizontal shift left by 2        Vertical shift down 3

Description: Description: Graphs   Description: Description: Graphs    Description: Description: Graphs

Example 21

Write an equation for the transformed graph of the quadratic function shown.

Since this is a quadratic function, first consider what the basic quadratic tool kit function looks like and how this has changed. Observing the graph, we notice several transformations: The original tool kit function has been flipped over the x axis, some kind of stretch or compression has occurred, and we can see a shift to the right 3 units and a shift up 1 unit.

In total there are four operations:

  1. Vertical reflection, requiring a negative sign outside the function
  2. Vertical Stretch or Horizontal Compression*
  3. Horizontal Shift Right 3 units, which tells us to put x-3 on the inside of the function
  4. Vertical Shift up 1 unit, telling us to add 1 on the outside of the function

It is unclear from the graph whether it is showing a vertical stretch or a horizontal compression. For the quadratic, it turns out we could represent it either way, so we’ll use a vertical stretch. You may be able to determine the vertical stretch by observation.

By observation, the basic tool kit function has a vertex at (0, 0) and symmetrical points at (1, 1) and (-1, 1). These points are one unit up and one unit over from the vertex. The new points on the transformed graph are one unit away horizontally but 2 units away vertically. They have been stretched vertically by two.

Not everyone can see this by simply looking at the graph. If you can, great, but if not, we can solve for it. First, we will write the equation for this graph, with an unknown vertical stretch.

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image291.gif                                         The original function

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image293.gif                                    Vertically reflected

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image295.gif                                 Vertically stretched

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image297.gif                  Shifted right 3

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image299.gif        Shifted up 1

We now know our graph is going to have an equation of the form File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image301.gif.  To find the vertical stretch, we can identify any point on the graph (other than the highest point), such as the point (2,-1), which tells us File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image303.gif.  Using our general formula, and substituting 2 for x, and -1 for g(x)

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image305.gif

This tells us that to produce the graph we need a vertical stretch by two. 

The function that produces this graph is therefore File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image307.gif.

Description: Description: Graphs

 

 

Try it Now

5. Consider the linear function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image309.gif.  Describe its transformation in words using the identity tool kit function f(x) = x as a reference.

 

 

     

Example 22

On what interval(s) is the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image311.gif increasing and decreasing?

This is a transformation of the toolkit reciprocal squared function, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image313.gif:

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image315.gif                                  A vertical flip and vertical stretch by 2

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image317.gif                      A shift right by 1

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image319.gif           A shift up by 3

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image321.jpg

The basic reciprocal squared function is increasing on File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image323.gifand decreasing on File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image325.gif.  Because of the vertical flip, the g(x) function will be decreasing on the left and increasing on the right.  The horizontal shift right by 1 will also shift these intervals to the right one.  From this, we can determine g(x) will be increasing on File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image327.gif and decreasing on File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image329.gif.  We also could graph the transformation to help us determine these intervals.

Try it Now: 6
On what interval(s) is the function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image331.gif concave up and down?

Important Topics of This Section

  • Transformations
  • Vertical Shift (up & down)
  • Horizontal Shifts (left & right)
  • Reflections over the vertical & horizontal axis
  • Even & Odd functions
  • Vertical Stretches & Compressions
  • Horizontal Stretches & Compressions
  • Combinations of Transformation

 

Try it Now Answers

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image333.jpg1. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image335.gif

2. a. Horizontal shift

    b. The function is shifted to the LEFT by 2 units.

    c.  Shown to the right

 

 

 

Description: Description: Graphs

3. Shown to the right

  Notice: g(x) = f(-x) looks the same as f(x)

4. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image339.gif so using the square root function we get File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image341.gif

5.  The identity tool kit function f(x) = x  has been transformed in 3 steps

      a.  Vertically stretched by 2.

      b.  Vertically reflected over the x axis.

      c.  Vertically shifted up by 1 unit.

 

6. h(t) is concave down on File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image343.gifand concave up on File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image345.gif

Section 1.5 Exercises

Describe how each function is a transformation of the original function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif

1. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image348.gif                                       2. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image350.gif

3. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image352.gif                                          4. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image354.gif

5. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image356.gif                                         6. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image358.gif

7. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image360.gif                                         8. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image362.gif   

9. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image364.gif                                    10. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image366.gif

 

11.  Write a formula for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image368.gif shifted up 1 unit and left 2 units.

12.  Write a formula for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image066.gif shifted down 3 units and right 1 unit.

13.  Write a formula for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image371.gif shifted down 4 units and right 3 units.

14.  Write a formula for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image373.gif shifted up 2 units and left 4 units.
 

15.  Tables of values for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image375.gif, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image377.gif, and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image379.gif are given below.   Write File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image377.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image379.gif as transformations of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif.

x

-2

-1

0

1

2

f(x)

-2

-1

-3

1

2

 

x

-1

0

1

2

3

g(x)

-2

-1

-3

1

2

 

x

-2

-1

0

1

2

h(x)

-1

0

-2

2

3

 

 

16.  Tables of values for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image375.gif, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image377.gif, and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image379.gif are given below.   Write File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image377.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image379.gif as transformations of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif.

x

-2

-1

0

1

2

f(x)

-1

-3

4

2

1

 

x

-3

-2

-1

0

1

g(x)

-1

-3

4

2

1

 

x

-2

-1

0

1

2

h(x)

-2

-4

3

1

0

 

 

The graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image390.gif is shown.  Sketch a graph of each transformation of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif

17.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image393.jpgFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image395.gif

18.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image397.gif

19.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image399.gif

20.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image401.gif

 

Sketch a graph of each function as a transformation of a toolkit function.

21.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image403.gif

22.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image405.gif

23.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image407.gif

24.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image409.gif

 Write an equation for each function graphed below.

 

25.Description: Description: Graphs                            26.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image413.jpg

27.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image415.jpg                           28.Description: Description: Graphs



Find a formula for each of the transformations of the square root whose graphs are given below.
29. Description: Description: Graphs                           30. Description: Description: Graphs
 

 

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image422.jpgThe graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image390.gif is shown.  Sketch a graph of each transformation of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif

31.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image426.gif

32.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image428.gif

 

  

33.  Starting with the graph of  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image430.gif write the equation of the graph that results from
a. reflecting File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif about the x-axis and the y-axis

b. reflecting File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif about the ­x-axis, shifting left 2 units, and down 3 units

 

34.  Starting with the graph of  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image434.gif write the equation of the graph that results from
a. reflecting File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif about the x-axis

b. reflecting File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif about the ­y-axis, shifting right 4 units, and up 2 units

 

Write an equation for each function graphed below.

 

35. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image438.jpg               36. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image440.jpg

 

37. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image442.jpg               38. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image444.jpg

 

39. For each equation below, determine if the function is Odd, Even, or Neither.

a.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image446.gif

b.      File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image448.gif

c.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image450.gif

 

40. For each equation below, determine if the function is Odd, Even, or Neither.

a.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image452.gif

b.      File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image454.gif

c.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image456.gif

 

Describe how each function is a transformation of the original function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif.

41. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image459.gif                                           42. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image149.gif

43. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image462.gif                                           44. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image464.gif

45. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image466.gif                                           46. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image468.gif

47. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image470.gif                                         48. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image472.gif

49. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image474.gif                                        50. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image476.gif

 

Write a formula for the function that results when the given toolkit function is transformed as described.

51.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image066.gif reflected over the y axis and horizontally compressed by a factor of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image479.gif.

 

52.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image368.gif reflected over the x axis and horizontally stretched by a factor of 2.

 

53.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image482.gif vertically compressed by a factor of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image484.gif, then shifted to the left 2 units and down 3 units.

 

54.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image371.gif vertically stretched by a factor of 8, then shifted to the right 4 units and up 2 units.

 

55.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif horizontally compressed by a factor of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image488.gif, then shifted to the right 5 units and up 1 unit.

 

56.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif horizontally stretched by a factor of 3, then shifted to the left 4 units and down 3 units.

Describe how each formula is a transformation of a toolkit function.  Then sketch a graph of the transformation.

57. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image491.gif                                 58. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image493.gif

 

59. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image495.gif                                  60. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image497.gif

 

61. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image499.gif                                              62. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image501.gif

 

63. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image503.gif                                    64. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image505.gif

 

65. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image507.gif                                        66. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image509.gif

 

 

Determine the interval(s) on which the function is increasing and decreasing.

 

67. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image491.gif                                 68. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image493.gif

 

69. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image507.gif                                        70. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image497.gif

 

Determine the interval(s) on which the function is concave up and concave down.

 

71. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image511.gif                                72. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image513.gif

 

73. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image503.gif                                     74. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image497.gif

 

 

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image516.jpgThe function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif is graphed here.  Write an equation for each graph below as a transformation of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif.

 

 

 

 

75.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image520.jpg    76.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image522.jpg    77.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image524.jpg

 

78.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image526.jpg    79.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image528.jpg    80.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image530.jpg

 

81.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image532.jpg    82.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image534.jpg    83.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image536.jpg

 

84.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image538.jpg    85.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image540.jpg    86.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image542.jpg

 

Write an equation for each transformed toolkit function graphed below.

 

87.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image544.jpg    88.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image546.jpg    89.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image548.jpg

 

90.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image550.jpg    91.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image552.jpg    92.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image554.jpg   

 

93.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image556.jpg    94.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image558.jpg    95.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image560.jpg

 

96.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image562.jpg    97.File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image564.jpg    98. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image566.jpg

 

 

 

 

 

99. Suppose you have a function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image568.gif such that the domain of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif is 1 ≤ x ≤ 6 and the range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image062.gif is −3 ≤ y ≤ 5.  [UW]

a.       What is the domain ofFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image572.gif?

b.      What is the range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image574.gif ?

c.       What is the domain of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image576.gif ?

d.      What is the range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image576.gif ?

e.       Can you find constants B and C so that the domain of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image579.gif is 8 ≤ x ≤ 9?

f.       Can you find constants A and D so that the range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image581.gif is 0 ≤ y ≤ 1?

 

 

 

Contributors

  • David Lippman (Pierce College)
  • Melonie Rasmussen (Pierce College)