Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

1.6 Inverse Functions

A fashion designer is traveling to Milan for a fashion show.  He asks his assistant, Betty, what 75 degrees Fahrenheit is in Celsius, and after a quick search on Google, she finds the formula \(C=\frac{5}{9}(F-32)\). Using this formula, she calculates \( \frac{5}{9}(75-32) \approx 24 \) degrees Celsius. The next day, the designer sends his assistant the week’s weather forecast for Milan, and asks her to convert the temperatures to Fahrenheit.

    File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image006.jpg

At first, Betty might consider using the formula she has already found to do the conversions. After all, she knows her algebra, and can easily solve the equation for \(F\) after substituting a value for \(C\). For example, to convert 26 degrees Celsius, she could write:

\[26=\dfrac{5}{9}(F-32)\]

\[26 \cdot \frac{9}{5}= F-32\]

\[26 \cdot \dfrac{9}{5}+32 \approx 79\]

After considering this option for a moment, she realizes that solving the equation for each of the temperatures would get awfully tedious, and realizes that since evaluation is easier than solving, it would be much more convenient to have a different formula, one which takes the Celsius temperature and outputs the Fahrenheit temperature. This is the idea of an inverse function, where the input becomes the output and the output becomes the input.

 

Definition: Inverse Functions

If \(f(a)=b\), then a function g(x) is an inverse of \(f\)  if  \(g(b)=a\).

The inverse of \(f(x)\) is typically notated, \(f^{-1}(x)\) which is read “f inverse of x”, so equivalently, if \(f(a)=b\) then \(f^{-1}(b)=a\). 

Important:  The raised -1 used in the notation for inverse functions is simply a notation, and does not designate an exponent or power of -1.

 
Example 1

If for a particular function, \(f(2)=4\), what do we know about the inverse?

Solution

The inverse function reverses which quantity is input and which quantity is output, so if  \(f(2)=4\), then  \(f^{-1}(4)=2\). Alternatively, if you want to re-name the inverse function \(g(x)\), then \(g(4) = 2\).

Try it Now: 1
Given that \(h^{-1}(6)=2\), what do we know about the original function \(h(x)\)?

Notice that original function and the inverse function undo each other. If  (f(a)=b\), then \(f^{-1}(b)=a\), returning us to the original input.  More simply put, if you compose these functions together you get the original input as your answer.

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image027.gif  and  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image029.gif

 

 
  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image031.gif

 

 

 

 

 

 

 

Since the outputs of the function f are the inputs to File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif, the range of f is also the domain of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif.  Likewise, since the inputs to f are the outputs of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif, the domain of f is the range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif.

 

Basically, like how the input and output values switch, the domain & ranges switch as well.  But be careful, because sometimes a function doesn’t even have an inverse function, or only has an inverse on a limited domain.  For example, the inverse of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image036.gif is File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image038.gif, since a square “undoes” a square root, but it is only the inverse of f(x) on the domain [0,∞), since that is the range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image036.gif.

 

Example 2
In this table, we have to blah blah blah

 

The function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image040.gif has domain File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif and range File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image044.gif, what would we expect the domain and range of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif to be?

 

We would expect File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif to swap the domain and range of f, so File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif would have domainFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image044.gif and range File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image042.gif.

 

 
Example 3

A function f(t) is given as a table below, showing distance in miles that a car has traveled in t minutes.  Find and interpret File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image048.gif

Text Box: t (minutes)	30	50	70	90
f(t) (miles)	20	40	60	70

 

 

 

The inverse function takes an output of f and returns an input for f.  So in the expressionFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image048.gif, the 70 is an output value of the original function, representing 70 miles.  The inverse will return the corresponding input of the original function f, 90 minutes, soFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image052.gif.  Interpreting this, it means that to drive 70 miles, it took 90 minutes.

 

Alternatively, recall the definition of the inverse was that if File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image010.gif then File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image016.gif.  By this definition, if you are given File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image056.gif then you are looking for a value a so thatFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image058.gif.  In this case, we are looking for a t so thatFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image060.gif, which is when t = 90.

 
 
Try it Now: 2

Using the table below

Text Box: t (minutes)	30	50	60	70	90
f(t) (miles)	20	40	50	60	70

 

 

Find and interpret the following

          a. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image063.gif

          b. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image065.gif

 
Example 4

A function g(x) is given as a graph below.  Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image067.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image069.gif

Description: Description: Graphs

 

To evaluateFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image067.gif, we find 3 on the horizontal axis and find the corresponding output value on the vertical axis. The point (3, 1) tells us that File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image073.gif

To evaluate File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image069.gif, recall that by definition File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image069.gifmeans g(x) = 3.  By looking for the output value 3 on the vertical axis we find the point (5, 3) on the graph, which means g(5) = 3, so by definitionFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image075.gif.

Try it Now: 3

Using the graph in Example 4 above

     a. find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image077.gif

     b. estimate File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image079.gif

Example 5

Returning to our designer’s assistant, find a formula for the inverse function that gives Fahrenheit temperature given a Celsius temperature.

A quick Google search would find the inverse function, but alternatively, Betty might look back at how she solved for the Fahrenheit temperature for a specific Celsius value, and repeat the process in general

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image081.gif

 

By solving in general, we have uncovered the inverse function.  If

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image083.gif

Then

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image085.gif

In this case, we introduced a function h to represent the conversion since the input and output variables are descriptive, and writing File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image087.gifcould get confusing.

It is important to note that not all functions will have an inverse function.  Since the inverse File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image014.gif takes an output of f and returns an input of f, in order for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif to itself be a function, then each output of f (input to File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif) must correspond to exactly one input of f (output of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif) in order for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image033.gif to be a function.  You might recall that this is the definition of a one-to-one function.

Properties of Inverses

In order for a function to have an inverse, it must be a one-to-one function. In some cases, it is desirable to have an inverse for a function even though the function is not one-to-one.  In those cases, we can often limit the domain of the original function to an interval on which the function is one-to-one, then find an inverse only on that interval.

If you have not already done so, go back to the toolkit functions that were not one-to-one and limit or restrict the domain of the original function so that it is one-to-one.  If you are not sure how to do this, proceed to Example 6.

 
Example 6

The quadratic function File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image091.gif is not one-to-one.  Find a domain on which this function is one-to-one, and find the inverse on that domain.

Description: Description: GraphsWe can limit the domain to File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image095.gifto restrict the graph to a portion that is one-to-one, and find an inverse on this limited domain.

 

You may have already guessed that since we undo a square with a square root, the inverse of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image091.gif on this domain is File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image097.gif

 

You can also solve for the inverse function algebraically.  If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image091.gif, we can introduce the variable to represent the output values, allowing us to writeFile:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image099.gif.  To find the inverse we solve for the input variable

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image101.gif

GraphsTo solve for x we take the square root of each side.  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image105.gif and get File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image107.gif, so  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image109.gif.  We have restricted x to being non-negative, so we’ll use the positive square root, File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image111.gif or File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image113.gif.  In cases like this where the variables are not descriptive, it is common to see the inverse function rewritten with the variable x:  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image097.gif.  Rewriting the inverse using the variable x is often required for graphing inverse functions using calculators or computers.

 

 
 

y = x

 

 


 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image116.gif

Note that the domain and range of the square root function do correspond with the range and domain of the quadratic function on the limited domain.  In fact, if we graph h(x) on the restricted domain and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image118.gif on the same axes, we can notice symmetry: the graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image118.gif is the graph of  h(x) reflected over the line y = x.
Example 7

Given the graph of f(x) shown, sketch a graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image014.gif.

 

This is a one-to-one function, so we will be able to sketch an inverse.  Note that the graph shown has an apparent domain of (0,∞) and range of (-∞,∞), so the inverse will have a domain of (-∞,∞) and range of (0,∞).

 

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image123.gif

Reflecting this graph of the line y = x, the point (1, 0) reflects to (0, 1), and the point (4, 2) reflects to (2, 4).  Sketching the inverse on the same axes as the original graph:

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image125.gif

Graphs

Important Topics of this Section

  • Definition of an inverse function
  • Composition of inverse functions yield the original input value
  • Not every function has an inverse function
  • To have an inverse a function must be one-to-one
  • Restricting the domain of functions that are not one-to-one.

 

Try it Now Answers

1. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image129.gif

2.a. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image131.gif.   In 60 minutes, 50 miles are traveled.

   b. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image133.gif.  To travel 60 miles, it will take 70 minutes.

3. a. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image135.gif

    b. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image137.gif  (this is an approximation – answers may vary slightly)

Section 1.6 Exercises

 

Assume that the function f is a one-to-one function.

1. If  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image139.gif , find  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image141.gif                                     2. If  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image143.gif , find  File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image145.gif

3. If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image147.gif, find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image149.gif                     4. If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image151.gif, find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image153.gif
5. If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image155.gif, find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image157.gif                                    6. If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image159.gif, find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image161.gif

Description: Description: Graphs

7. Using the graph of File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image165.gif shown

a.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image167.gif

b.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image169.gif

c.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image171.gif

d.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image173.gif

 

 

File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image175.jpg

8. Using the graph shown

a.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image177.gif

b.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image179.gif

c.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image181.gif

d.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image183.gif

 

 

 

9. Use the table below to find the indicated quantities.

x

0

1

2

3

4

5

6

7

8

9

f(x)

8

0

7

4

2

6

5

3

9

1

 

a.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image185.gif

b.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image187.gif

c.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image171.gif

d.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image190.gif

 

 

10. Use the table below to fill in the missing values.

t

0

1

2

3

4

5

6

7

8

h(t)

6

0

1

7

2

3

5

4

9

 

a.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image192.gif

b.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image194.gif

c.       Find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image196.gif

d.      Solve File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image198.gif

 

For each table below, create a table for File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image200.gif

11.

x

3

6

9

13

14

f(x)

1

4

7

12

16

 

12.

x

3

5

7

13

15

f(x)

2

6

9

11

16

 

 

For each function below, find File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image202.gif

13. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image204.gif                                             14. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image206.gif

15. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image208.gif                                             16. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image210.gif

17. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image212.gif                                         18. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image214.gif

 

For each function, find a domain on which f is one-to-one and non-decreasing, then find the inverse of f restricted to that domain.

19. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image216.gif                                          20. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image218.gif

21. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image220.gif                                           22. File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image222.gif

 

23. If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image224.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image226.gif, find

a.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image228.gif

b.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image230.gif

c.       What does this tell us about the relationship between File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image165.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image233.gif?

 

24. If File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image235.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image237.gif, find

a.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image228.gif

b.       File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image230.gif

c.       What does this tell us about the relationship between File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image165.gif and File:C:/Users/DELMAR~1/AppData/Local/Temp/OICE_831AB0AC-7707-43BD-BC8E-41ACF4C7C811.0/msohtmlclip1/01/clip_image233.gif?

Contributors

  • David Lippman (Pierce College)
  • Melonie Rasmussen (Pierce College)