Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.3E: Limit Laws and Techniques for Computing Limits EXERCISES

( \newcommand{\kernel}{\mathrm{null}\,}\)

2.3: The Limit Laws

In the following exercises, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).

83) lim𝑥0(4𝑥2 2𝑥 +3)

Answer:

Use constant multiple law and difference law:

lim𝑥0(4𝑥2 2𝑥 +3) =4lim𝑥0𝑥2 2lim𝑥0𝑥 +lim𝑥03 =3

84) lim𝑥1𝑥3+3𝑥2+547𝑥

85) lim𝑥2𝑥26𝑥+3

Answer:

Use root law: lim𝑥2𝑥26𝑥+3 =lim𝑥2(𝑥26𝑥+3) =19

86) lim𝑥1(9𝑥+1)2

In the following exercises, use direct substitution to evaluate each limit.

87) lim𝑥7𝑥2

Answer:
49

88) lim𝑥2(4𝑥2 1)

89) lim𝑥011+sin𝑥

Answer:
1

90) lim𝑥2𝑒2𝑥𝑥2

91) lim𝑥127𝑥𝑥+6

Answer:
57

92) lim𝑥3ln𝑒3𝑥


In the following exercises, use direct substitution to show that each limit leads to the indeterminate form 0/0. Then, evaluate the limit.

93) lim𝑥4𝑥216𝑥4

Answer:
lim𝑥4𝑥216𝑥4 =161644 =00;𝑡𝑒𝑛,lim𝑥4𝑥216𝑥4 =lim𝑥4(𝑥+4)(𝑥4)𝑥4 =8

94) lim𝑥2𝑥2𝑥22𝑥

95) lim𝑥63𝑥182𝑥12

Answer:
lim𝑥63𝑥182𝑥12 =18181212 =00

then, lim𝑥63𝑥182𝑥12 =lim𝑥63(𝑥6)2(𝑥6) =32

96) lim0(1+)21

97) lim𝑡9𝑡9𝑡3

Answer:
lim𝑥9𝑡9𝑡3 =9933 =00;𝑡𝑒𝑛,lim𝑡9𝑡9𝑡3 =lim𝑡9𝑡9𝑡3𝑡+3𝑡+3 =lim𝑡9(𝑡 +3) =6

98) lim01𝑎+1𝑎, where a is a real-valued constant

99) lim𝜃𝜋sin𝜃tan𝜃

Answer:
lim𝜃𝜋sin𝜃tan𝜃 =sin𝜋tan𝜋 =00;𝑡𝑒𝑛,lim𝜃𝜋sin𝜃tan𝜃 =lim𝜃𝜋sin𝜃sin𝜃cos𝜃 =lim𝜃𝜋cos𝜃 =1

100) lim𝑥1𝑥31𝑥21

101) lim𝑥1/22𝑥2+3𝑥22𝑥1

Answer:
lim𝑥1/22𝑥2+3𝑥22𝑥1 =12+32211 =00;𝑡𝑒𝑛,lim𝑥1/22𝑥2+3𝑥22𝑥1 =lim𝑥1/2𝑓𝑟𝑎𝑐(2𝑥1)(𝑥+2)2𝑥1 =52

102) lim𝑥3𝑥+41𝑥+3


In the following exercises, use direct substitution to obtain an undefined expression. Then, use the method of Example to simplify the function to help determine the limit.

103) lim𝑥22𝑥2+7𝑥4𝑥2+𝑥2

Answer:
−∞

104) lim𝑥2+2𝑥2+7𝑥4𝑥2+𝑥2

105) lim𝑥12𝑥2+7𝑥4𝑥2+𝑥2

Answer:
−∞

106) lim𝑥1+2𝑥2+7𝑥4𝑥2+𝑥2


In the following exercises, assume that lim𝑥6𝑓(𝑥) =4,lim𝑥6𝑔(𝑥) =9, and lim𝑥6(𝑥) =6. Use these three facts and the limit laws to evaluate each limit

107) lim𝑥62𝑓(𝑥)𝑔(𝑥)

Answer:
lim𝑥62𝑓(𝑥)𝑔(𝑥) =2lim𝑥6𝑓(𝑥)lim𝑥6𝑔(𝑥) =72

108) lim𝑥6𝑔(𝑥)1𝑓(𝑥)

109) lim𝑥6(𝑓(𝑥) +13𝑔(𝑥))

Answer:
lim𝑥6(𝑓(𝑥) +13𝑔(𝑥)) =lim𝑥6𝑓(𝑥) +13lim𝑥6𝑔(𝑥) =7\

110) lim𝑥6((𝑥))32

111) lim𝑥6𝑔(𝑥)𝑓(𝑥)

Answer:
lim𝑥6𝑔(𝑥)𝑓(𝑥) =lim𝑥6𝑔(𝑥)lim𝑥6𝑓(𝑥) =5

112) lim𝑥6𝑥 (𝑥)

113) lim𝑥6[(𝑥 +1) 𝑓(𝑥)]

Answer:
lim𝑥6[(𝑥 +1)𝑓(𝑥)] =(lim𝑥6(𝑥 +1))(lim𝑥6𝑓(𝑥)) =28

114) lim𝑥6(𝑓(𝑥) 𝑔(𝑥) (𝑥))


[T] In the following exercises, use the definition of the piecewise-defined function to evaluate the given limits (you may want to draw the graph).

115) 𝑓(𝑥) ={𝑥2𝑥3,𝑥+4𝑥>3

  1. a. lim𝑥3𝑓(𝑥)
  2. b. lim𝑥3+𝑓(𝑥)
  3. c. lim𝑥3𝑓(𝑥)
Answer:

CNX_Calc_Figure_02_03_202.jpeg

a. 9; b. 7; c. DNE

.

116) 𝑔(𝑥) ={𝑥31𝑥01𝑥>0

  1. a. lim𝑥0𝑔(𝑥)
  2. b. lim𝑥0+𝑔(𝑥)
  3. c. lim𝑥0𝑔(𝑥)

117) (𝑥) ={𝑥22𝑥+1𝑥<23𝑥𝑥2

  1. a. lim𝑥2(𝑥)
  2. b. lim𝑥2+(𝑥)
  3. c. lim𝑥2(𝑥)
Answer:
a. 1; b. 1; c. 1

In the following exercises, use the following graphs and the limit laws to evaluate each limit.

CNX_Calc_Figure_02_03_201.jpeg

118) lim𝑥3+(𝑓(𝑥) +𝑔(𝑥))

119) lim𝑥3(𝑓(𝑥) 3𝑔(𝑥))

Answer:
lim𝑥3(𝑓(𝑥) 3𝑔(𝑥)) =lim𝑥3𝑓(𝑥) 3lim𝑥3𝑔(𝑥) =0 +6 =6

120) lim𝑥0𝑓(𝑥)𝑔(𝑥)3

121) lim𝑥52+𝑔(𝑥)𝑓(𝑥)

Answer:
lim𝑥52+𝑔(𝑥)𝑓(𝑥) =2+(lim𝑥5𝑔(𝑥))lim𝑥5𝑓(𝑥) =2+02 =1

122) lim𝑥1(𝑓(𝑥))2

123) lim𝑥1𝑓(𝑥)𝑔(𝑥)

Answer:
lim𝑥13𝑓(𝑥)𝑔(𝑥) =3lim𝑥1𝑓(𝑥)lim𝑥1𝑔(𝑥) =32+5 =37

124) lim𝑥7(𝑥 𝑔(𝑥))

125) lim𝑥9[𝑥 𝑓(𝑥) +2 𝑔(𝑥)]

Answer:
lim𝑥9(𝑥𝑓(𝑥) +2𝑔(𝑥)) =(lim𝑥9𝑥)(lim𝑥9𝑓(𝑥))+2lim𝑥9(𝑔(𝑥)) =(9)(6) +2(4) =46

For the following problems, evaluate the limit using the squeeze theorem. Use a calculator to graph the functions 𝑓(𝑥),𝑔(𝑥), and (𝑥) when possible.

126) [T] True or False? If 2𝑥 1 𝑔(𝑥) 𝑥2 2𝑥 +3, then lim𝑥2𝑔(𝑥) =0.

127) [T] lim𝜃0𝜃2cos(1𝜃)

Answer:

The limit is zero.

CNX_Calc_Figure_02_03_206.jpeg

128) lim𝑥0𝑓(𝑥), where 𝑓(𝑥) ={0𝑥𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑥2𝑥𝑖𝑟𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

129) [T] In physics, the magnitude of an electric field generated by a point charge at a distance r in vacuum is governed by Coulomb’s law: 𝐸(𝑟) =𝑞4𝜋𝜀02𝑟, where E represents the magnitude of the electric field, q is the charge of the particle, r is the distance between the particle and where the strength of the field is measured, and \frac{1}{4πε_0} is Coulomb’s constant: 8.988 ×109 Nm2/C2.

a. Use a graphing calculator to graph 𝐸(𝑟) given that the charge of the particle is 𝑞 =1010.

b. Evaluate lim𝑟0+𝐸(𝑟). What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from the right?

Answer:

a

CNX_Calc_Figure_02_03_207.jpeg

b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.

130) [T] The density of an object is given by its mass divided by its volume: 𝜌 =𝑚/𝑉.

a. Use a calculator to plot the volume as a function of density (𝑉 =𝑚/𝜌), assuming you are examining something of mass 8 kg (𝑚 =8).

b. Evaluate lim𝑥0+𝑉(𝜌) and explain the physical meaning.


Chapter Review Exercises

212) Using the graph, find each limit or explain why the limit does not exist.

a. lim𝑥1𝑓(𝑥)

b. lim𝑥1𝑓(𝑥)

c. lim𝑥0+𝑓(𝑥)

d. lim𝑥2𝑓(𝑥)

CNX_Calc_Figure_02_05_207.jpeg


In the following exercises, evaluate the limit algebraically or explain why the limit does not exist.

213) lim𝑥22𝑥23𝑥2𝑥2

Answer:
5

214) lim𝑥03𝑥2 2𝑥 +4

215) lim𝑥3𝑥32𝑥213𝑥2

Answer:
8/7

216) lim𝑥𝜋/2𝑐𝑜𝑡𝑥𝑐𝑜𝑠𝑥 This is covered in section 2.4

217) lim𝑥5𝑥2+25𝑥+5

Answer:
DNE

218) lim𝑥23𝑥22𝑥8𝑥24

219) lim𝑥1𝑥21𝑥31

Answer:
2/3

220) lim𝑥1𝑥21𝑥1

221) \displaystyle 𝑙𝑖𝑚𝑥44𝑥𝑥2

Answer:
−4

222) lim𝑥41𝑥2


In the following exercises, use the squeeze theorem to prove the limit.

223) lim𝑥0𝑥2𝑐𝑜𝑠(2𝜋𝑥) =0

Answer:
Since 1 𝑐𝑜𝑠(2𝜋𝑥) 1, then 𝑥2 𝑥2𝑐𝑜𝑠(2𝜋𝑥) 𝑥2. Since 𝑙𝑖𝑚𝑥0𝑥2 =0 =𝑙𝑖𝑚𝑥0 𝑥2, it follows that 𝑙𝑖𝑚𝑥0𝑥2𝑐𝑜𝑠(2𝜋𝑥) =0.

224) lim𝑥0𝑥3𝑠𝑖𝑛(𝜋𝑥) =0


2.3E: Limit Laws and Techniques for Computing Limits EXERCISES is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?