1.E: Algebra Fundamentals (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise \PageIndex{1}
Reduce to lowest terms.
- \frac{56}{120}
- \frac{54}{60}
- \frac{155}{90}
- \frac{315}{120}
- Answer
-
1. \frac{7}{15}
3. \frac{31}{18}
Exercise \PageIndex{2}
Simplify.
- - \left( - \frac { 1 } { 2 } \right)
- - \left( - \left( - \frac { 5 } { 8 } \right) \right)
- - ( - ( - a ) )
- - ( - ( - ( - a ) ) )
- Answer
-
1. \frac{1}{2}
3. -a
Exercise \PageIndex{3}
Graph the solution set and give the interval notation equivalent.
- x \geq - 10
- x < 0
- - 8 \leq x < 0
- - 10 < x \leq 4
- x < 3 \text { and } x \geq - 1
- x < 0 \text { and } x > 1
- x < - 2 \text { or } x > - 6
- x \leq - 1 \text { or } x > 3
- Answer
-
1. [ - 10 , \infty );
Figure 1.E.1
3. [ - 8,0 );
Figure 1.E.2
5. [ - 1,3 );
Figure 1.E.3
7. \mathbb { R }
Figure 1.E.4
Exercise \PageIndex{4}
Determine the inequality that corresponds to the set expressed using interval notation.
- [ - 8 , \infty )
- ( - \infty , - 7 )
- [ 12,32 ]
- [ - 10,0 )
- ( - \infty , 1 ] \cup ( 5 , \infty )
- ( - \infty , - 10 ) \cup ( - 5 , \infty )
- ( - 4 , \infty )
- ( - \infty , 0 )
- Answer
-
1. x \geq - 8
3. 12 \leq x \leq 32
5. x \leq 1 \text { or } x > 5
7. x > - 4
Exercise \PageIndex{5}
Simplify.
- - \left| - \frac { 3 } { 4 } \right|
- - \left| - \left( - \frac { 2 } { 3 } \right) \right|
- - ( - | - 4 | )
- - ( - ( - | - 3 | ) )
- Answer
-
1. -\frac{3}{4}
3. 4
Exercise \PageIndex{6}
Determine the values represented by a.
- | a | = 6
- | a | = 1
- | a | = - 5
- | a | = a
- Answer
-
1. a = \pm 6
2. \varnothing
Exercise \PageIndex{7}
Perform the operations.
- \frac { 1 } { 4 } - \frac { 1 } { 5 } + \frac { 3 } { 20 }
- \frac { 2 } { 3 } - \left( - \frac { 3 } { 4 } \right) - \frac { 5 } { 12 }
- \frac { 5 } { 3 } \left( - \frac { 6 } { 7 } \right) \div \left( \frac { 5 } { 14 } \right)
- \left( - \frac { 8 } { 9 } \right) \div \frac { 16 } { 27 } \left( \frac { 2 } { 15 } \right)
- \left( - \frac { 2 } { 3 } \right) ^ { 3 }
- \left( - \frac { 3 } { 4 } \right) ^ { 2 }
- ( - 7 ) ^ { 2 } - 8 ^ { 2 }
- - 4 ^ { 2 } + ( - 4 ) ^ { 3 }
- 10 - 8 \left( ( 3 - 5 ) ^ { 2 } - 2 \right)
- 4 + 5 \left( 3 - ( 2 - 3 ) ^ { 2 } \right)
- - 3 ^ { 2 } - \left( 7 - ( - 4 + 2 ) ^ { 3 } \right)
- ( - 4 + 1 ) ^ { 2 } - ( 3 - 6 ) ^ { 3 }
- \frac { 10 - 3 ( - 2 ) ^ { 3 } } { 3 ^ { 2 } - ( - 4 ) ^ { 2 } }
- \frac { 6 \left[ ( - 5 ) ^ { 2 } - ( - 3 ) ^ { 2 } \right] } { 4 - 6 ( - 2 ) ^ { 2 } }
- 7 - 3 \left| 6 - ( - 3 - 2 ) ^ { 2 } \right|
- - 6 ^ { 2 } + 5 \left| 3 - 2 ( - 2 ) ^ { 2 } \right|
- \frac { 12 - \left| 6 - 2 ( - 4 ) ^ { 2 } \right| } { 3 - | - 4 | }
- \frac { - ( 5 - 2 | - 3 | ) ^ { 3 } } { \left| 4 - ( - 3 ) ^ { 2 } \right| - 3 ^ { 2 } }
- Answer
-
1. \frac{1}{5}
3. -4
5. -\frac{8}{27}
7. -15
9. -6
11. -24
13. -\frac{34}{7}
15. -50
17. 14
Exercise \PageIndex{8}
Simplify.
- 3 \sqrt { 8 }
- 5 \sqrt { 18 }
- 6 \sqrt { 0 }
- \sqrt { - 6 }
- \sqrt { \frac { 75 } { 16 } }
- \sqrt { \frac { 80 } { 49 } }
- \sqrt [ 3 ] { 40 }
- \sqrt [ 3 ] { 81 }
- \sqrt [ 3 ] { - 81 }
- \sqrt [ 3 ] { - 32 }
- \sqrt [ 3 ] { \frac { 250 } { 27 } }
- \sqrt [ 3 ] { \frac { 1 } { 125 } }
- Answer
-
1. 6 \sqrt { 2 }
3. 0
5. \frac { 5 \sqrt { 3 } } { 4 }
7. 2 \sqrt [ 3 ] { 5 }
9. - 3 \sqrt [ 3 ] { 3 }
11. \frac { 5 \sqrt [ 3 ] { 2 } } { 3 }
Exercise \PageIndex{9}
Use a calculator to approximate the following to the nearest thousandth.
- \sqrt { 12 }
- 3 \sqrt { 14 }
- \sqrt [ 3 ] { 18 }
- 7 \sqrt [ 3 ] { 25 }
- Find the length of the diagonal of a square with sides measuring 8 centimeters.
- Find the length of the diagonal of a rectangle with sides measuring 6 centimeters and 12 centimeters.
- Answer
-
1. 3.464
3. 2.621
5. 8 \sqrt { 2 } centimeters
Exercise \PageIndex{10}
Multiply
- \frac { 2 } { 3 } \left( 9 x ^ { 2 } + 3 x - 6 \right)
- - 5 \left( \frac { 1 } { 5 } y ^ { 2 } - \frac { 3 } { 5 } y + \frac { 1 } { 2 } \right)
- \left( a ^ { 2 } - 5 a b - 2 b ^ { 2 } \right) ( - 3 )
- \left( 2 m ^ { 2 } - 3 m n + n ^ { 2 } \right) \cdot 6
- Answer
-
1. 6 x ^ { 2 } + 2 x - 4
3. - 3 a ^ { 2 } + 15 a b + 6 b ^ { 2 }
Exercise \PageIndex{11}
Combine like terms.
- 5 x ^ { 2 } y - 3 x y ^ { 2 } - 4 x ^ { 2 } y - 7 x y ^ { 2 }
- 9 x ^ { 2 } y ^ { 2 } + 8 x y + 3 - 5 x ^ { 2 } y ^ { 2 } - 8 x y - 2
- a ^ { 2 } b ^ { 2 } - 7 a b + 6 - a ^ { 2 } b ^ { 2 } + 12 a b - 5
- 5 m ^ { 2 } n - 3 m n + 2 m n ^ { 2 } - 2 n m - 4 m ^ { 2 } n + m n ^ { 2 }
- Answer
-
1. x ^ { 2 } y - 10 x y ^ { 2 }
3. 5 a b + 1
Exercise \PageIndex{12}
Simplify.
- 5 x ^ { 2 } + 4 x - 3 \left( 2 x ^ { 2 } - 4 x - 1 \right)
- \left( 6 x ^ { 2 } y ^ { 2 } + 3 x y - 1 \right) - \left( 7 x ^ { 2 } y ^ { 2 } - 3 x y + 2 \right)
- a ^ { 2 } - b ^ { 2 } - \left( 2 a ^ { 2 } + a b - 3 b ^ { 2 } \right)
- m ^ { 2 } + m n - 6 \left( m ^ { 2 } - 3 n ^ { 2 } \right)
- Answer
-
1. - x ^ { 2 } + 16 x + 3
3. - a ^ { 2 } - a b + 2 b ^ { 2 }
Exercise \PageIndex{13}
Evaluate.
- x ^ { 2 } - 3 x + 1 \text { where } x = - \frac { 1 } { 2 }
- x ^ { 2 } - x - 1 \text { where } x = - \frac { 2 } { 3 }
- a ^ { 4 } - b ^ { 4 } \text { where } a = - 3 \text { and } b = - 1
- a ^ { 2 } - 3 a b + 5 b ^ { 2 } \text { where } a = 4 \text { and } b = - 2
- ( 2 x + 1 ) ( x - 3 ) \text { where } x = - 3
- ( 3 x + 1 ) ( x + 5 ) \text { where } x = - 5
- \sqrt { b ^ { 2 } - 4 a c } \text { where } a = 2 , b = - 4 , \text { and } c = - 1
- \sqrt { b ^ { 2 } - 4 a c } \text { where } a = 3 , b = - 6 , \text { and } c = - 2
- \pi r ^ { 2 } h \text { where } r = 2 \sqrt { 3 } \text { and } h = 5
- \frac { 4 } { 3 } \pi r ^ { 3 } \text { where } r = 2 \sqrt [ 3 ] { 6 }
- What is the simple interest earned on a 4 year investment of $4,500 at an annual interest rate of 4 \frac{3}{4}%?
- James traveled at an average speed of 48 miles per hour for 2 \frac{1}{4} hours. How far did he travel?
- The period of a pendulum T in seconds is given by the formula T = 2 \pi \sqrt { \frac { L } { 32 } } where L represents its length in feet. Approximate the period of a pendulum with length 2 feet. Round off to the nearest tenth of a foot.
- The average distance d, in miles, a person can see an object is given by the formula d = \frac { \sqrt { 6 h } } { 2 } where h represents the person’s height above the ground, measured in feet. What average distance can a person see an object from a height of 10 feet? Round off to the nearest tenth of a mile.
- Answer
-
1. \frac{11}{4}
3. 80
5. 30
7. 2 \sqrt { 6 }
9. 60 \pi
11. \$ 855
13. 1.6 seconds
Exercise \PageIndex{14}
Multiply.
- \frac { x ^ { 10 } \cdot x ^ { 2 } } { x ^ { 5 } }
- \frac { x ^ { 6 } \left( x ^ { 2 } \right) ^ { 4 } } { x ^ { 3 } }
- - 7 x ^ { 2 } y z ^ { 3 } \cdot 3 x ^ { 4 } y ^ { 2 } z
- 3 a ^ { 2 } b ^ { 3 } c \left( - 4 a ^ { 2 } b c ^ { 4 } \right) ^ { 2 }
- \frac { - 10 a ^ { 5 } b ^ { 0 } c ^ { - 4 } } { 25 a ^ { - 2 } b ^ { 2 } c ^ { - 3 } }
- \frac { - 12 x ^ { - 6 } y ^ { - 2 } z } { 36 x ^ { - 3 } y ^ { 4 } z ^ { 6 } }
- \left( - 2 x ^ { - 5 } y ^ { - 3 } z \right) ^ { - 4 }
- \left( 3 x ^ { 6 } y ^ { - 3 } z ^ { 0 } \right) ^ { - 3 }
- \left( \frac { - 5 a ^ { 2 } b ^ { 3 } } { c ^ { 5 } } \right) ^ { 2 }
- \left( \frac { - 3 m ^ { 5 } } { 5 n ^ { 2 } } \right) ^ { 3 }
- \left( \frac { - 2 a ^ { - 2 } b ^ { 3 } c } { 3 a b ^ { - 2 } c ^ { 0 } } \right) ^ { - 3 }
- \left( \frac { 6 a ^ { 3 } b ^ { - 3 } c } { 2 a ^ { 7 } b ^ { 0 } c ^ { - 4 } } \right) ^ { - 2 }
- Answer
-
1. x ^ { 7 }
3. - 21 x ^ { 6 } y ^ { 3 } z ^ { 4 }
5. - \frac { 2 a ^ { 7 } } { 5 b ^ { 2 } c }
7. \frac { x ^ { 20 } y ^ { 12 } } { 16 z ^ { 4 } }
9. \frac { 25 a ^ { 4 } b ^ { 6 } } { c ^ { 10 } }
11. - \frac { 27 a ^ { 9 } } { 8 b ^ { 15 } c ^ { 3 } }
Exercise \PageIndex{15}
Perform the operations.
- \left( 4.3 \times 10 ^ { 22 } \right) \left( 3.1 \times 10 ^ { - 8 } \right)
- \left( 6.8 \times 10 ^ { - 33 } \right) \left( 1.6 \times 10 ^ { 7 } \right)
- \frac { 1.4 \times 10 ^ { - 32 } } { 2 \times 10 ^ { - 10 } }
- \frac { 1.15 \times 10 ^ { 26 } } { 2.3 \times 10 ^ { - 7 } }
- The value of a new tablet computer in dollars can be estimated using the formula v = 450(t + 1)^{ −1} where t represents the number of years after it is purchased. Use the formula to estimate the value of the tablet computer 2 \frac{1}{2} years after it was purchased.
- The speed of light is approximately 6.7 × 10^{8} miles per hour. Express this speed in miles per minute and determine the distance light travels in 4 minutes.
- Answer
-
1. 1.333 \times 10 ^ { 15 }
3. 7 \times 10 ^ { - 23 }
5. \$ 128.57
Exercise \PageIndex{16}
Simplify.
- \left( x ^ { 2 } + 3 x - 5 \right) - \left( 2 x ^ { 2 } + 5 x - 7 \right)
- \left( 6 x ^ { 2 } - 3 x + 5 \right) + \left( 9 x ^ { 2 } + 3 x - 4 \right)
- \left( a ^ { 2 } b ^ { 2 } - a b + 6 \right) - ( a b + 9 ) + \left( a ^ { 2 } b ^ { 2 } - 10 \right)
- \left( x ^ { 2 } - 2 y ^ { 2 } \right) - \left( x ^ { 2 } + 3 x y - y ^ { 2 } \right) - \left( 3 x y + y ^ { 2 } \right)
- - \frac { 3 } { 4 } \left( 16 x ^ { 2 } + 8 x - 4 \right)
- 6 \left( \frac { 4 } { 3 } x ^ { 2 } - \frac { 3 } { 2 } x + \frac { 5 } { 6 } \right)
- ( 2 x + 5 ) ( x - 4 )
- ( 3 x - 2 ) \left( x ^ { 2 } - 5 x + 2 \right)
- \left( x ^ { 2 } - 2 x + 5 \right) \left( 2 x ^ { 2 } - x + 4 \right)
- \left( a ^ { 2 } + b ^ { 2 } \right) \left( a ^ { 2 } - b ^ { 2 } \right)
- ( 2 a + b ) \left( 4 a ^ { 2 } - 2 a b + b ^ { 2 } \right)
- ( 2 x - 3 ) ^ { 2 }
- ( 3 x - 1 ) ^ { 3 }
- ( 2 x + 3 ) ^ { 4 }
- \left( x ^ { 2 } - y ^ { 2 } \right) ^ { 2 }
- \left( x ^ { 2 } y ^ { 2 } + 1 \right) ^ { 2 }
- \frac { 27 a ^ { 2 } b - 9 a b + 81 a b ^ { 2 } } { 3 a b }
- \frac { 125 x ^ { 3 } y ^ { 3 } - 25 x ^ { 2 } y ^ { 2 } + 5 x y ^ { 2 } } { 5 x y ^ { 2 } }
- \frac { 2 x ^ { 3 } - 7 x ^ { 2 } + 7 x - 2 } { 2 x - 1 }
- \frac { 12 x ^ { 3 } + 5 x ^ { 2 } - 7 x - 3 } { 4 x + 3 }
- \frac { 5 x ^ { 3 } - 21 x ^ { 2 } + 6 x - 3 } { x - 4 }
- \frac { x ^ { 4 } + x ^ { 3 } - 3 x ^ { 2 } + 10 x - 1 } { x + 3 }
- \frac { a ^ { 4 } - a ^ { 3 } + 4 a ^ { 2 } - 2 a + 4 } { a ^ { 2 } + 2 }
- \frac { 8 a ^ { 4 } - 10 } { a ^ { 2 } - 2 }
- Answer
-
1. - x ^ { 2 } - 2 x + 2
3. 2 a ^ { 2 } b ^ { 2 } - 2 a b - 13
5. - 12 x ^ { 2 } - 6 x + 3
7. 2 x ^ { 2 } - 3 x - 20
9. 2 x ^ { 4 } - 5 x ^ { 3 } + 16 x ^ { 2 } - 13 x + 20
11. 8 a ^ { 3 } + b ^ { 3 }
13. 27 x ^ { 3 } - 27 x ^ { 2 } + 9 x - 1
15. x ^ { 4 } - 2 x ^ { 2 } y ^ { 2 } + y ^ { 4 }
17. 9 a + 27 b - 3
19. x ^ { 2 } - 3 x + 2
21. 5 x ^ { 2 } - x + 2 + \frac { 5 } { x - 4 }
23. a ^ { 2 } - a + 2
Exercise \PageIndex{17}
Solve.
- 6 x - 8 = 2
- 12 x - 5 = 3
- \frac { 5 } { 4 } x - 3 = \frac { 1 } { 2 }
- \frac { 5 } { 6 } x - \frac { 1 } { 4 } = \frac { 3 } { 2 }
- \frac { 9 x + 2 } { 3 } = \frac { 5 } { 6 }
- \frac { 3 x - 8 } { 10 } = \frac { 5 } { 2 }
- 3 a - 5 - 2 a = 4 a - 6
- 8 - 5 y + 2 = 4 - 7 y
- 5 x - 6 - 8 x = 1 - 3 x
- 17 - 6 x - 10 = 5 x + 7 - 11 x
- 5 ( 3 x + 3 ) - ( 10 x - 4 ) = 4
- 6 - 2 ( 3 x - 1 ) = - 4 ( 1 - 3 x )
- 9 - 3 ( 2 x + 3 ) + 6 x = 0
- - 5 ( x + 2 ) - ( 4 - 5 x ) = 1
- \frac { 5 } { 9 } ( 6 y + 27 ) = 2 - \frac { 1 } { 3 } ( 2 y + 3 )
- 4 - \frac { 4 } { 5 } ( 3 a + 10 ) = \frac { 1 } { 10 } ( 4 - 2 a )
- Solve for s : A = \pi r ^ { 2 } + \pi r s
- Solve for x : y = m x + b
- A larger integer is 3 more than twice another. If their sum divided by 2 is 9, find the integers.
- The sum of three consecutive odd integers is 171. Find the integers.
- The length of a rectangle is 3 meters less than twice its width. If the perimeter measures 66 meters, find the length and width.
- How long will it take $500 to earn $124 in simple interest earning 6.2% annual interest?
- It took Sally 3 \frac{1}{2} hours to drive the 147 miles home from her grandmother’s house. What was her average speed?
- Jeannine invested her bonus of $8,300 in two accounts. One account earned 3 \frac{1}{2} % simple interest and the other earned 4 \frac{3}{4} % simple interest. If her total interest for one year was $341.75, how much did she invest in each account?
- Answer
-
1. \frac{5}{3}
3. \frac{14}{5}
5. \frac{1}{18}
7. \frac{1}{3}
9. \varnothing
11. -3
13. \mathbb { R }
15. -\frac{7}{2}
17. s = \frac { A - \pi r ^ { 2 } } { \pi r }
19. 5,13
21. Length: 21 meters; Width: 12 meters
23. 42 miles per hour
Exercise \PageIndex{18}
Solve. Graph all solutions on a number line and provide the corresponding interval notation.
- 5 x - 7 < 18
- 2 x - 1 > 2
- 9 - x \leq 3
- 3 - 7 x \geq 10
- 61 - 3 ( x + 3 ) > 13
- 7 - 3 ( 2 x - 1 ) \geq 6
- \frac { 1 } { 3 } ( 9 x + 15 ) - \frac { 1 } { 2 } ( 6 x - 1 ) < 0
- \frac { 2 } { 3 } ( 12 x - 1 ) + \frac { 1 } { 4 } ( 1 - 32 x ) < 0
- 20 + 4 ( 2 a - 3 ) \geq \frac { 1 } { 2 } a + 2
- \frac { 1 } { 3 } \left( 2 x + \frac { 3 } { 2 } \right) - \frac { 1 } { 4 } x < \frac { 1 } { 2 } \left( 1 - \frac { 1 } { 2 } x \right)
- - 4 \leq 3 x + 5 < 11
- 5 < 2 x + 15 \leq 13
- - 1 < 4 ( x + 1 ) - 1 < 9
- 0 \leq 3 ( 2 x - 3 ) + 1 \leq 10
- - 1 < \frac { 2 x - 5 } { 4 } < 1
- - 2 \leq \frac { 3 - x } { 3 } < 1
- 2 x + 3 < 13 \text { and } 4 x - 1 > 10
- 3 x - 1 \leq 8 \text { and } 2 x + 5 \geq 23
- 5 x - 3 < - 2 \text { or } 5 x - 3 > 2
- 1 - 3 x \leq - 1 \text { or } 1 - 3 x \geq 1
- 5 x + 6 < 6 \text { or } 9 x - 2 > - 11
- 2 ( 3 x - 1 ) < - 16 \text { or } 3 ( 1 - 2 x ) < - 15
- Jerry scored 90, 85, 92, and 76 on the first four algebra exams. What must he score on the fifth exam so that his average is at least 80?
- If 6 degrees less than 3 times an angle is between 90 degrees and 180 degrees, then what are the bounds of the original angle?
- Answer
-
1. ( - \infty , 5 );
Figure 1.E.5
3. [ 6 , \infty );
Figure 1.E.6
5. ( - \infty , 13 );
Figure 1.E.7
7. \varnothing;
Figure 1.E.8
9. \left[ - \frac { 4 } { 5 } , \infty \right);
Figure 1.E.9
11. [ - 3,2 );
Figure 1.E.10
13. \left( - 1 , \frac { 3 } { 2 } \right);
Figure 1.E.11
15. \left( \frac { 1 } { 2 } , \frac { 9 } { 2 } \right);
Figure 1.E.12
17. \left( \frac { 11 } { 4 } , 5 \right);
Figure 1.E.13
19. \left( - \infty , \frac { 1 } { 5 } \right) \cup ( 1 , \infty );
Figure 1.E.14
21. \mathbb { R };
Figure 1.E.15
23. Jerry must score at least 57 on the fifth exam.
Sample Exam
Exercise \PageIndex{19}
Simplify.
- 5 - 3 \left( 12 - \left| 2 - 5 ^ { 2 } \right| \right)
- \left( - \frac { 1 } { 2 } \right) ^ { 2 } - \left( 3 - 2 \left| - \frac { 3 } { 4 } \right| \right) ^ { 3 }
- - 7 \sqrt { 60 }
- 5 \sqrt [ 3 ] { - 32 }
- Find the diagonal of a square with sides measuring 6 centimeters.
- Answer
-
1. 38
3. - 14 \sqrt { 15 }
5. 6 \sqrt { 2 } centimeters
Exercise \PageIndex{20}
Simplify
- - 5 x ^ { 2 } y z ^ { - 1 } \left( 3 x ^ { 3 } y ^ { - 2 } z \right)
- \left( \frac { - 2 a ^ { - 4 } b ^ { 2 } c } { a ^ { - 3 } b ^ { 0 } c ^ { 2 } } \right) ^ { - 3 }
- 2 \left( 3 a ^ { 2 } b ^ { 2 } + 2 a b - 1 \right) - a ^ { 2 } b ^ { 2 } + 2 a b - 1
- \left( x ^ { 2 } - 6 x + 9 \right) - \left( 3 x ^ { 2 } - 7 x + 2 \right)
- ( 2 x - 3 ) ^ { 3 }
- ( 3 a - b ) \left( 9 a ^ { 2 } + 3 a b + b ^ { 2 } \right)
- \frac { 6 x ^ { 4 } - 17 x ^ { 3 } + 16 x ^ { 2 } - 18 x + 13 } { 2 x - 3 }
- Answer
-
2. - \frac { a ^ { 3 } c ^ { 3 } } { 8 b ^ { 6 } }
4. - 2 x ^ { 2 } + x + 7
6. 27 a ^ { 3 } - b ^ { 3 }
Exercise \PageIndex{21}
Solve.
- \frac { 4 } { 5 } x - \frac { 2 } { 15 } = 2
- \frac { 3 } { 4 } ( 8 x - 12 ) - \frac { 1 } { 2 } ( 2 x - 10 ) = 16
- 12 - 5 ( 3 x - 1 ) = 2 ( 4 x + 3 )
- \frac { 1 } { 2 } ( 12 x - 2 ) + 5 = 4 \left( \frac { 3 } { 2 } x - 8 \right)
- Solve for y : a x + b y = c
- Answer
-
1. \frac{8}{3}
3. \frac{11}{23}
5. y = \frac { c - a x } { b }
Exercise \PageIndex{22}
Solve. Graph the solutions on a number line and give the corresponding interval notation.
- 2 ( 3 x - 5 ) - ( 7 x - 3 ) \geq 0
- 2 ( 4 x - 1 ) - 4 ( 5 + 2 x ) < - 10
- - 6 \leq \frac { 1 } { 4 } ( 2 x - 8 ) < 4
- 3 x - 7 > 14 \text { or } 3 x - 7 < - 14
- Answer
-
2. \mathbb { R };
Figure 1.E.16
4. \left( - \infty , - \frac { 7 } { 3 } \right) \cup ( 7 , \infty );
Figure 1.E.17
Exercise \PageIndex{23}
Use algebra to solve the following.
- Degrees Fahrenheit F is given by the formula F = \frac{9}{5} C + 32 where C represents degrees Celsius. What is the Fahrenheit equivalent to 35° Celsius?
- The length of a rectangle is 5 inches less than its width. If the perimeter is 134 inches, find the length and width of the rectangle.
- Melanie invested 4,500 in two separate accounts. She invested part in a CD that earned 3.2% simple interest and the rest in a savings account that earned 2.8% simple interest. If the total simple interest for one year was $138.80, how much did she invest in each account?
- A rental car costs $45.00 per day plus $0.48 per mile driven. If the total cost of a one-day rental is to be at most $105, how many miles can be driven?
- Answer
-
2. Length: 31 inches; width: 36 inches
4. The car can be driven at most 125 miles.