Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5.2: Simplifying Radical Expressions

  • Anonymous
  • LibreTexts

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives

  • Simplify radical expressions using the product and quotient rule for radicals.
  • Use formulas involving radicals.

Simplifying Radical Expressions

An algebraic expression that contains radicals is called a radical expression14. We use the product and quotient rules to simplify them.

Example 5.2.1:

Simplify: 327x3.

Solution

Use the fact that nan=a when n is odd.

327x3=333x3Applytheproductruleforradicals.=3333x3Simplify.=3x=3x

Answer:

3x

Example 5.2.2:

Simplify: 416y4.

Solution

Use the fact that nan=|a| when n is even.

416y4=424y4Applytheproductruleforradicals.=4244y4Simplify.=2|y|=2|y|

Since y is a variable, it may represent a negative number. Thus we need to ensure that the result is positive by including the absolute value.

Answer:

2|y|

Note

Typically, at this point in algebra we note that all variables are assumed to be positive. If this is the case, then y in the previous example is positive and the absolute value operator is not needed. The example can be simplified as follows.

416y4=424y4=4244y4=2y

In this section, we will assume that all variables are positive. This allows us to focus on calculating nth roots without the technicalities associated with the principal nth root problem. For this reason, we will use the following property for the rest of the section,

nan=a, if a0nthroot

When simplifying radical expressions, look for factors with powers that match the index.

Example 5.2.3:

Simplify: 12x6y3.

Solution

Begin by determining the square factors of 12,x6, and y3.

12=223x6=(x3)2y3=y2y}Squarefactors

Make these substitutions, and then apply the product rule for radicals and simplify.

12x6y3=223(x3)2y2yApplytheproductruleforradicals.=22(x3)2y23ySimplify.=2x3y3y=2x3y3y

Answer:

2x3y3y

Example 5.2.4:

Simplify: 18a5b8.

Solution

Begin by determining the square factors of 18, a5, and b8.

18=232a5=a2a2a=(a2)2ab8=b4b4=(b4)2}Squarefactors

Make these substitutions, apply the product and quotient rules for radicals, and then simplify.

18a5b8=232(a2)2a(b4)2Applytheproductandquotientruleforradicals.=32(a2)22a(b4)2Simplify.=3a22ab4

Answer:

3a22ab4

Example 5.2.5:

Simplify: 380x5y7.

Solution

Begin by determining the cubic factors of 80,x5, and y7.

80=245=2325x5=x3x2y7=y6y=(y2)3y}Cubicfactors

Make these substitutions, and then apply the product rule for radicals and simplify.

380x5y7=32325x3x2(y2)3y=3233x33(y2)3325x2y=2xy2310x2y=2xy2310x2y

Answer:

2xy2310x2y

Example 5.2.6:

Simplify: 39x6y3z9.

Solution

The coefficient 9=32, and thus does not have any perfect cube factors. It will be left as the only remaining radicand because all of the other factors are cubes, as illustrated below:

x6=(x2)3y3=(y)3z9=(z3)3}Cubicfactors

Replace the variables with these equivalents, apply the product and quotient rules for radicals, and then simplify.

39x6y3z9=39(x2)3y3(z3)3=393(x2)33y33(z3)3=39x2yz3=x239yz3

Answer:

x239yz3

Example 5.2.7:

Simplify: 481a4b5.

Solution

Determine all factors that can be written as perfect powers of 4. Here, it is important to see that b5=b4b. Hence the factor b will be left inside the radical.

481a4b5=434a4b4b=4344a44b44b=3ab4b=3ab4b

Answer:

3ab4b

Example 5.2.8:

Simplify: 532x3y6z5.

Solution

Notice that the variable factor x cannot be written as a power of 5 and thus will be left inside the radical. In addition, y6=y5y; the factor y will be left inside the radical as well.

332x3y6z5=5(2)5x3y5yz5=5(2)55y55z55x3y=2yz5x3y=2yz5x3y

Answer:

2yz5x3y

Tip: To simplify finding an nth root, divide the powers by the index.

a6=a3, which is a6÷2=a33b6=b2, which is b6÷3=b26c6=c,which isc6÷6=c1

If the index does not divide into the power evenly, then we can use the quotient and remainder to simplify. For example,

a5=a2a, which is a5÷2=a2r13b5=b3b2, which is b5÷3=b1r25c14=c25c4,which isc14÷5=c2r4

The quotient is the exponent of the factor outside of the radical, and the remainder is the exponent of the factor left inside the radical.

Exercise 5.2.1

Simplify: 3162a7b5c4.

Answer

3a2bc36ab2c

www.youtube.com/v/kT9Qa1nfmlk

Formulas Involving Radicals

Formulas often consist of radical expressions. For example, the period of a pendulum, or the time it takes a pendulum to swing from one side to the other and back, depends on its length according to the following formula.

T=2πL32

Here T represents the period in seconds and L represents the length in feet of the pendulum.

Example 5.2.9:

If the length of a pendulum measures 112 feet, then calculate the period rounded to the nearest tenth of a second.

Solution

Substitute 112=32 for L and then simplify.

T=2πL32=2π3232=2π32132Applythequotientruleforradicals.=2π364Simplify.=π341.36

Answer:

The period is approximately 1.36 seconds.

Frequently you need to calculate the distance between two points in a plane. To do this, form a right triangle using the two points as vertices of the triangle and then apply the Pythagorean theorem. Recall that the Pythagorean theorem states that if given any right triangle with legs measuring a and b units, then the square of the measure of the hypotenuse c is equal to the sum of the squares of the legs: a2+b2=c2. In other words, the hypotenuse of any right triangle is equal to the square root of the sum of the squares of its legs.

a797ed6a31d772dd2dec1cb1a383f4c8.png
Figure 5.2.1

Example 5.2.10:

Find the distance between (5,3) and (1,1).

Solution

Form a right triangle by drawing horizontal and vertical lines though the two points. This creates a right triangle as shown below:

bf4f6344c2a899fba37f822f8453f1c1.png
Figure 5.2.2

The length of leg b is calculated by finding the distance between the x-values of the given points, and the length of leg a is calculated by finding the distance between the given y-values.

a=31=2 units b=1(5)=1+5=6 units 

Next, use the Pythagorean theorem to find the length of the hypotenuse.

c=22+62=4+36=40=410=210 units 

Answer:

The distance between the two points is 210 units.

Generalize this process to produce a formula that can be used to algebraically calculate the distance between any two given points.

35e4ae8d57a7e162258ad07996948557.png
Figure 5.2.3

Given two points, (x1,y1) and (x2,y2) the distance, \(d|), between them is given by the distance formula15, d=(x2x1)2+(y2y1)2.

Example 5.2.11:

Calculate the distance between (4,7) and (2,1).

Solution

Use the distance formula with the following points.

(x1,y1)(x2,y2)(4,7)(2,1)

It is a good practice to include the formula in its general form before substituting values for the variables; this improves readability and reduces the probability of making errors.

d=(x2x1)2+(y2y1)2=(2(4))2+(17)2=(2+4)2+(17)2=(6)2+(6)2=72=362=62

Answer:

The distance between the two points is 62 units.

Example 5.2.12:

Do the three points (2,1),(3,2), and (8,3) form a right triangle?

Solution

The Pythagorean theorem states that having side lengths that satisfy the property a2+b2=c2 is a necessary and sufficient condition of right triangles. In other words, if you can show that the sum of the squares of the leg lengths of the triangle is equal to the square of the length of the hypotenuse, then the triangle must be a right triangle. First, calculate the length of each side using the distance formula.

Geometry Calculation

e2045ebb89277d5506fac4a2ad8f6ee4.png

Figure 5.2.4

Points: (2,1) and (8,3)

a=(82)2+[3(1)]2=(6)2+(3+1)2=36+(2)2=36+4=40=210

890ed3e5701a2b6e0a30c42955845c2f.png
Figure 5.2.5

Points: (2,1) and (3,2)

b=(32)2+[2(1)]2=(1)2+(2+1)2=1+(3)2=1+9=10

adc55720057e6386dd90a2ece072fbed.png

Figure 5.2.6

Points: (3,2) and (8,3)

c=(83)2+(32)2=(5)2+(5)2=25+25=50=52

Table 5.2.1

Now we check to see if a2+b2=c2.

a2+b2=c2(210)2+(10)2=(52)24(10)2+(10)2=25(2)2410+10=25250=50

Answer:

Yes, the three points form a right triangle.

Exercise 5.2.2

The speed of a vehicle before the brakes were applied can be estimated by the length of the skid marks left on the road. On wet concrete, the speed v in miles per hour can be estimated by the formula v=23d, where d represents the length of the skid marks in feet. Estimate the speed of a vehicle before applying the brakes if the skid marks left behind measure 27 feet. Round to the nearest mile per hour.

Answer

18 miles per hour

www.youtube.com/v/8IscYu3YWqw

Key Takeaways

  • To simplify a radical expression, look for factors of the radicand with powers that match the index. If found, they can be simplified by applying the product and quotient rules for radicals, as well as the property nan=a, where a is nonnegative.
  • A radical expression is simplified if its radicand does not contain any factors that can be written as perfect powers of the index.
  • We typically assume that all variable expressions within the radical are nonnegative. This allows us to focus on simplifying radicals without the technical issues associated with the principal nth root. If this assumption is not made, we will ensure a positive result by using absolute values when simplifying radicals with even indices.

Exercise 5.2.3

Assume that the variable could represent any real number and then simplify.

  1. 9x2
  2. 16y2
  3. 38y3
  4. 3125a3
  5. 464x4
  6. 481y4
  7. 36a4
  8. 100a8
  9. 4a6
  10. a10
  11. 18a4b5
  12. 48a5b3
  13. 6128x6y8
  14. 6a6b7c8
  15. (5x4)2
  16. (3x5)4
  17. x26x+9
  18. x210x+25
  19. 4x2+12x+9
  20. 9x2+6x+1
Answer

1. 3|x|

3. 2y

5. 2|x|

7. 6a2

9. 2|a3|

11. 3a2b22b

13. 2|xy|62y2

15. |5x4|

17. |x3|

19. |2x+3|

Exercise 5.2.4

Simplify. (Assume all variable expressions represent positive numbers.)

  1. 49a2
  2. 64b2
  3. x2y2
  4. 25x2y2z2
  5. 180x3
  6. 150y3
  7. 49a3b2
  8. 4a4b3c
  9. 45x5y3
  10. 50x6y4
  11. 64r2s6t5
  12. 144r8s6t2
  13. (x+1)2
  14. (2x+3)2
  15. 4(3x1)2
  16. 9(2x+3)2
  17. 9x325y2
  18. 4x59y4
  19. m736n4
  20. 147m9n6
  21. 2r2s525t4
  22. 36r5s2t6
  23. 327a3
  24. 3125b3
  25. 3250x4y3
  26. 3162a3b5
  27. 364x3y6z9
  28. 3216x12y3
  29. 38x3y4
  30. 327x5y3
  31. 3a4b5c6
  32. 3a7b5c3
  33. 38x427y3
  34. 3x5125y6
  35. 3360r5s12t13
  36. 3540r3s2t9
  37. 481x4
  38. 4x4y4
  39. 416x4y8
  40. 481x12y4
  41. 4a4b5c6
  42. 454a6c8
  43. 4128x6
  44. 4243y7
  45. 532m10n5
  46. 537m9n10
  47. 34x2
  48. 79y2
  49. 5x4x2y
  50. 3y16x3y2
  51. 12aba5b3
  52. 6a2b9a7b2
  53. 2x38x6
  54. 5x2327x3
  55. 2ab38a4b5
  56. 5a2b327a3b3
Answer

1. 7a

3. xy

5. 6x5x

7. 7aba

9. 3x2y5xy

11. 8rs3t2t

13. x+1

15. 2(3x1)

17. 3xx5y

19. m3m6n2

21. rs22s5t2

23. 3a

25. 5xy32x

27. 4xy2z3

29. 2xy3y

31. abc23ab2

33. 2x3x3y

35. 2rs4t4345r2t

37. 3x

39. 2xy2

41. abc4bc2

43. 2x48x2

45. 2m2n

47. 6x

49. 10x2y

51. 12a3b2ab

53. 4x3

55. 4a2b23ab2

Exercise 5.2.5

Rewrite the following as a radical expression with coefficient 1.

  1. 3x6x
  2. 5y5y
  3. ab10a
  4. 2ab2a
  5. m2nmn
  6. 2m2n33n
  7. 2x33x
  8. 3y3y2
  9. 2y244y
  10. x2y59xy2
Answer

1. 54x3

3. 10a3b2

5. m5n3

7. 324x4

9. 464y9

Exercise 5.2.6

The period T in seconds of a pendulum is given by the formula

T=2πL32

where L represents the length in feet of the pendulum. Calculate the period, given each of the following lengths. Give the exact value and the approximate value rounded to the nearest tenth of a second.

  1. 8 feet
  2. 32 feet
  3. 12 foot
  4. 18 foot
Answer

1. π seconds; 3.1 seconds

3. \frac { \pi } { 4 } seconds; 0.8 seconds

Exercise \PageIndex{7}

The time t in seconds an object is in free fall is given by the formula

t = \frac { \sqrt { s } } { 4 }

where s represents the distance in feet the object has fallen. Calculate the time it takes an object to fall, given each of the following distances. Give the exact value and the approximate value rounded to the nearest tenth of a second.

  1. 48 feet
  2. 80 feet
  3. 192 feet
  4. 288 feet
  5. The speed of a vehicle before the brakes were applied can be estimated by the length of the skid marks left on the road. On dry pavement, the speed v in miles per hour can be estimated by the formula v = 2 \sqrt { 6 d }, where d represents the length of the skid marks in feet. Estimate the speed of a vehicle before applying the brakes on dry pavement if the skid marks left behind measure 27 feet. Round to the nearest mile per hour.
  6. The radius r of a sphere can be calculated using the formula r = \frac { \sqrt [ 3 ] { 6 \pi ^ { 2 } V } } { 2 \pi }, where V represents the sphere’s volume. What is the radius of a sphere if the volume is 36π cubic centimeters?
Answer

1. \sqrt{3} seconds; 1.7 seconds

3. 2\sqrt{3} seconds; 3.5 seconds

5. 25 miles per hour

Exercise \PageIndex{8}

Given the function find the y-intercept

  1. f ( x ) = \sqrt { x + 12 }
  2. f ( x ) = \sqrt { x + 8 } - 3
  3. f ( x ) = \sqrt [ 3 ] { x - 8 }
  4. f ( x ) = \sqrt [ 3 ] { x + 27 }
  5. f ( x ) = \sqrt [ 3 ] { x + 16 }
  6. f ( x ) = \sqrt [ 3 ] { x + 3 } - 1
Answer

1. ( 0,2 \sqrt { 3 } )

3. (0,-2)

5. ( 0,2 \sqrt [ 3 ] { 2 } )

Exercise \PageIndex{9}

Use the distance formula to calculate the distance between the given two points.

  1. (5,-7) and (3,-8)
  2. (-9,7) and (-8,4)
  3. (-3,-4) and (3,-6)
  4. (-5,-2) and (1,-6)
  5. (-1,1) and (-4,10)
  6. (8,-3) and (2,-12)
  7. (0,-6) and (-3,0)
  8. (0,0) and (8,-4)
  9. \left( \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right) and \left( - 1 , \frac { 3 } { 2 } \right)
  10. \left( - \frac { 1 } { 3 } , 2 \right) and \left( \frac { 5 } { 3 } , - \frac { 2 } { 3 } \right)
Answer

1. \sqrt{5} units

3. 2\sqrt{10} units

5. 3\sqrt{10} units

7. 3\sqrt{5} units

9. \frac{5}{2} units

Exercise \PageIndex{10}

Determine whether or not the three points form a right triangle. Use the Pythagorean theorem to justify your answer.

  1. ( 2 , - 1 ) , ( - 1,2 ) , \text { and } ( 6,3 )
  2. ( - 5,2 ) , ( - 1 , - 2 ) , \text { and } ( - 2,5 )
  3. ( - 5,0 ) , ( 0,3 ) , \text { and } ( 6 , - 1 )
  4. ( - 4 , - 1 ) , ( - 2,5 ) , \text { and } ( 7,2 )
  5. ( 1 , - 2 ) , ( 2,3 ) , \text { and } ( - 3,4 )
  6. ( - 2,1 ) , ( - 1 , - 1 ) , \text { and } ( 1,3 )
  7. ( - 4,0 ) , ( - 2 , - 10 ) , \text { and } ( 3 , - 9 )
  8. ( 0,0 ) , ( 2,4 ) , \text { and } ( - 2,6 )
Answer

1. Right triangle

3. Not a right triangle

5. Right triangle

7. Right triangle

Exercise \PageIndex{11}

  1. Give a value for x such that \sqrt { x ^ { 2 } } \neq x. Explain why it is important to assume that the variables represent nonnegative numbers.
  2. Research and discuss the accomplishments of Christoph Rudolff. What is he credited for?
  3. What is a surd, and where does the word come from?
  4. Research ways in which police investigators can determine the speed of a vehicle after an accident has occurred. Share your findings on the discussion board.
Answer

1. Answer may vary

3. Answer may vary

Footnotes

14An algebraic expression that contains radicals.

15Given two points (x_{1} , y_{1} ) and (x_{2}, y_{2}), calculate the distance d between them using the formula d=\sqrt { \left( x _ { 2 } - x _ { 1 } \right) ^ { 2 } + \left( y _ { 2 } - y _ { 1 } \right) ^ { 2 } }.


This page titled 5.2: Simplifying Radical Expressions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?