Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

9.1E: Solving Trigonometric Equations with Identities (Exercises)

  • Page ID
    56110
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    For the following exercises, find all solutions exactly that exist on the interval \([0,2 \pi)\).

    1. \(\csc ^{2} t=3\)

    2. \(\cos ^{2} x=\frac{1}{4}\)

    3. \(2 \sin \theta=-1\)

    4. \(\tan x \sin x+\sin (-x)=0\)

    5. \(9 \sin \omega-2=4 \sin ^{2} \omega\)

    6. \(1-2 \tan (\omega)=\tan ^{2}(\omega)\)

    For the following exercises, use basic identities to simplify the expression.

    7. \(\sec x \cos x+\cos x-\frac{1}{\sec x}\)

    8. \(\sin ^{3} x+\cos ^{2} x \sin x\)

    For the following exercises, determine if the given identities are equivalent.

    9. \(\sin ^{2} x+\sec ^{2} x-1=\frac{\left(1-\cos ^{2} x\right)\left(1+\cos ^{2} x\right)}{\cos ^{2} x}\)

    10. \(\tan ^{3} x \csc ^{2} x \cot ^{2} x \cos x \sin x=1\)


    9.1E: Solving Trigonometric Equations with Identities (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.