Key Terms Chapter 10: Exponential and Logarithmic Functions
- Page ID
- 102257
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Words (or words that have the same definition) | The definition is case sensitive | (Optional) Image to display with the definition [Not displayed in Glossary, only in pop-up on pages] | (Optional) Caption for Image | (Optional) External or Internal Link | (Optional) Source for Definition |
---|---|---|---|---|---|
(Eg. "Genetic, Hereditary, DNA ...") | (Eg. "Relating to genes or heredity") | ![]() |
The infamous double helix | https://bio.libretexts.org/ | CC-BY-SA; Delmar Larsen |
Word(s) | Definition | Image | Caption | Link | Source |
---|---|---|---|---|---|
common logarithmic function | The function \(f(x)=\log{x}\) is the common logarithmic function with base10, where \(x>0\). \[y=\log{x} \text{ is equivalent to } x=10^y\] | ||||
logarithmic function | The function \(f(x)=\log_a{x}\) is the logarithmic function with base \(a\), where \(a>0\), \(x>0\), and \(a≠1\). \[y=\log_a{x} \text{ is equivalent to } x=a^y\] | ||||
natural logarithmic function | The function \(f(x)=\ln(x)\) is the natural logarithmic function with base \(e\), where \(x>0\). \[y=\ln{x} \text{ is equivalent to } x=e^y\] | ||||
asymptote | A line which a graph of a function approaches closely but never touches. | ||||
exponential function | An exponential function, where \(a>0\) and \(a≠1\), is a function of the form \(f(x)=a^x\). | ||||
natural base | The number \(e\) is defined as the value of \((1+\frac{1}{n})^n\), as \(n\) gets larger and larger. We say, as \(n\) increases without bound, \(e≈2.718281827...\) | ||||
natural exponential function | The natural exponential function is an exponential function whose base is \(e\): \(f(x)=e^x\). The domain is \((−∞,∞)\) and the range is \((0,∞)\). | ||||
one-to-one function | A function is one-to-one if each value in the range has exactly one element in the domain. For each ordered pair in the function, each \(y\)-value is matched with only one \(x\)-value. |