Skip to main content
Mathematics LibreTexts

Answers to Selected Exercises

  • Page ID
    33480
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \(2\max(a,b)\) \(2\min(a,b)\) \(4\max(a,b,c)\)

    \(4\min(a,b,c)\)

    \(\infty\) (no); \(-1\) (yes) \(3\) (no); \(-3\) (no) \(\sqrt7\) (yes); \(-\sqrt7\) (yes)\ \(2\) (no); \(-3\) (no) \(1\) (no); \(-1\) (no)

    \(\sqrt7\) (no); \(-\sqrt7\) (no)

    \(2^n/(2n)!\) \(2\cdot3^n/(2n+1)!\) \(2^{-n}(2n)!/(n!)^2\)

    \(n^n/n!\)\

    no

    no

    \(\dst{A_n=\frac{x^n}{n!}\left(\ln x-\sum_{j=1}^n\frac{1} {j}\right)}\)

    \(f_n(x_1,x_2, \dots,x_n)=2^{n-1}\max(x_1,x_2, \dots,x_n)\), \(g_n(x_1,x_2, \dots,x_n)=2^{n-1}\min(x_1,x_2, \dots,x_n)\)

    \([\frac{1}{2},1)\); \((-\infty,\frac{1}{2})\cup[1,\infty)\); \((-\infty,0]\cup(\frac{3}{2},\infty)\); \((0,\frac{3}{2}]\); \((-\infty,0]\cup(\frac{3}{2},\infty)\); \((-\infty,\frac{1}{2}]\cup[1,\infty)\) \((-3,-2) \cup (2,3)\); \((-\infty,-3]\cup[-2,2]\cup[3,\infty)\); \(\emptyset\); \((-\infty,\infty)\);\(\emptyset\); \((-\infty,-3]\cup[-2,2]\cup[3,\infty)\)

    \(\emptyset\); \((-\infty,\infty)\); \(\emptyset\); \((-\infty,\infty)\); \(\emptyset\); \((-\infty,\infty)\)

    \(\emptyset\); \((-\infty,\infty)\); \([-1,1]\); \((-\infty,-1)\cup(1,\infty)\); \([-1,1]\); \((-\infty,\infty)\)

    \((0,3]\) \([0,2]\) \((-\infty,1)\cup(2,\infty)\)

    \((-\infty,0]\cup(3,\infty)\)

    \(\frac{1}{4}\) \(\frac{1}{6}\) \(6\)

    \(1\)

    neither; \((-1,2)\, \cup\, (3,\infty)\); \((-\infty,-1)\,\cup\,(2,3)\); \((-\infty,-1]\,\cup\,(2,3)\); \((-\infty,-1]\,\cup\,[2,3]\) open; \(S\); \((1,2)\); \([1,2]\) closed; \((-3,-2)\,\cup\,(7,8)\); \((-\infty,-3)\,\cup\,(-2,7)\,\cup(8,\infty)\); \((-\infty-3]\,\cup[-2,7]\,\cup[8,\infty)\)

    closed; \(\emptyset\); \(\bigcup\set{(n,n+1)}{n=\mbox{integer}}\); \((-\infty,\infty)\)

    \(\set{x}{x=1/n,\ n=1,2, \dots}\); \(\emptyset\) , \(S_1=\) rationals, \(S_2=\) irrationals any set whose supremum is an isolated point of the set , the rationals

    \(S_1=\) rationals, \(S_2=\) irrationals

    \(D_f=[-2,1)\cup[3,\infty)\), \(D_g=(-\infty,-3]\cup[3,7)\cup(7,\infty)\), \(D_{f\pm g}=D_{fg}=[3,7)\cup(7,\infty)\), \(D_{f/g}=(3,4)\cup(4,7)\cup(7,\infty)\)

    , \(\set{x}{x\ne(2k+1)\pi/2\mbox{ where }k=\mbox{integer}}\) \(\set{x}{x\ne0,1}\) \(\set{x}{x\ne0}\)

    \([1,\infty)\)

    \(4\) \(12\) \(-1\) \(2\)

    \(-2\)

    \(\frac{11}{17}\) \(-\frac{2}{3}\) \(\frac{1}{3}\)

    \(2\)

    \(0,2\) \(0\), none \(-\frac{1}{3},\frac{1}{3}\)

    none, \(0\)

    \(0\) \(0\) none \(0\) none

    \(0\)

    \(0\) \(0\) none none none

    \(0\)

    \(\infty\) \(-\infty\) \(\infty\) \(\infty\) \(\infty\)

    \(-\infty\)

    none \(\infty\) \(\infty\)

    none

    \(\infty\) \(\infty\) \(\infty\) \(-\infty\) none

    \(\infty\)

    \(\frac{3}{2}\) \(\frac{3}{2}\) \(\infty\) \(-\infty\) \(\infty\)

    \(\frac{1}{2}\)

    \(\lim_{x\to\infty}r(x)=\infty\) if \(n>m\) and \(a_n/b_m>0\); \(=-\infty\) if \(n>m\) and \(a_n/b_m<0\); \(=a_n/b_m\) if \(n=m\); \(=0\) if \(n<m\). \(\lim_{x\to-\infty}r(x)=(-1)^{n-m}\lim_{x\to\infty}r(x)\)

    \(\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)\)

    \(\limsup_{x\to x_0-}(f-g)(x)\le\limsup_{x\to x_0-}f(x)-\liminf_{x\to x_0-}g(x)\); \(\liminf_{x\to x_0-}(f-g)(x)\ge\liminf_{x\to x_0-}f(x)-\limsup_{x\to x_0-}g(x)\)

    from the right continuous none continuous none continuous

    from the left

    \([0,1)\), \((0,1)\), \([1,2)\), \((1,2)\), \((1,2]\), \([1,2]\) \([0,1)\), \((0,1)\), \((1,\infty)\)

    \(\tanh x\) is continuous for all \(x\), \(\coth x\) for all \(x\ne0\)

    No \([-1,1]\), \([0,\infty)\) \(\bigcup_{n=-\infty}^\infty (2n\pi,(2n+1)\pi)\), \((0,\infty)\) \(\bigcup_{n=-\infty}^\infty(n\pi,(n+1)\pi)\), \((-\infty,-1)\cup(-1,1)\cup(1,\infty)\)

    \(\bigcup_{n=-\infty}^\infty[n\pi,(n+\frac{1}{2})\pi]\), \([0,\infty)\)

    \((-1,1)\) \((-\infty,\infty)\) \(x_0\ne(2k+\frac{3}{2}\pi),\ k=\) integer \(x\ne\frac{1}{2}\) \(x\ne1\) \(x\ne(k+\frac{1}{2}\pi),\ k=\) integer \(x\ne(k+\frac{1}{2}\pi),\ k=\) integer \(x\ne0\)

    \(x\ne0\)

    \(p(c)=q(c)\) and \(p'_{-}(c)=q'_{+}(c)\)

    \(f^{(k)}(x)=n(n-1)\cdots(n-k-1)x^{n-k-1}|x|\) if \(1\le k\le n-1\); \(f^{(n)}(x)=n!\) if \(x>0\); \(f^{(n)}(x)=-n!\) if \(x<0\); \(f^{(k)}(x)=0\) if \(k>n\) and \(x\ne0\); \(f^{(k)}(0)\) does not exist if \(k\ge n\).

    \(c'=ac-bs\), \(s'=bc+as\)

    \(c(x)=e^{ax}\cos bx\), \(s(x)=e^{ax}\sin bx\)

    \(f(x)=-1\) if \(x\le0\), \(f(x)=1\) if \(x>0\); then \(f'(0+)=0\), but \(f_+'(0)\) does not exist.

    continuous from the right

    There is no such function (Theorem~2.3.9).

    Counterexample: Let \(x_0=0\), \(f(x)=|x|^{3/2}\sin(1/x)\) if \(x\ne0\), and \(f(0)~=0~\).

    Counterexample: Let \(x_0=0\), \(f(x)=x/|x|\) if \(x\ne0\), \(f(0)=0\).

    \(-\infty\) if \(\alpha\le0\), \(0\) if \(\alpha>0\)

    \(\infty\) if \(\alpha>0\), \(-\infty\) if \(\alpha\le0\)

    \(-\infty\) \(-\infty\) if \(\alpha\le0\), \(0\) if \(\alpha>0\)

    \(0\)

    Suppose that \(g'\) is continuous at \(x_0\) and \(f(x)=g(x)\) if \(x\le x_0\), \(f(x)=1+g(x)\) if \(x>x_0\).

    \(1\) \(e\)

    \(1\) \(e^L\)

    \(f^{(n+1)}(x_0)/(n+1)!\).

    Counterexample: Let \(x_0=0\) and \(f(x)=x|x|\).

    Let \(g(x)=1+|x-x_0|\), so \(f(x)=(x-x_0)(1+|x-x_0|)\).

    Let \(g(x)=1+|x-x_0|\), so \(f(x)=(x-x_0)^2(1+|x-x_0|)\).

    \(1\), \(2\), \(2\), \(0\) \(0\), \(-\pi\), \(3\pi/2\), \(-4\pi+\pi^3/2\)\ \(-\pi^2/4\), \(-2\pi\), \(-6+\pi^2/4\), \(4\pi\)

    \(-2\), \(5\), \(-16\), \(65\)

    \(0\), \(-1\), \(0\), \(5\)

    \(0\), \(1\), \(0\), \(5\) \(-1\), \(0\), \(6\), \(-24\) \(\sqrt2\), \(3\sqrt2\), \(11\sqrt2\), \(57\sqrt2\) \(-1\), \(3\), \(-14\), \(88\) min neither min max min neither min

    min

    \(f(x)=e^{-1/x^2}\) if \(x\ne0\), \(f(0)=0\) (Exercise~)

    None if \(b^2-4c<0\); local min at \(x_1=(-b+\sqrt{b^2-4c})/2\) and local max at \(x_1=(-b-\sqrt{b^2-4c})/2\) if \(b^2-4c>0\); if \(b^2=4c\) then \(x=-b/2\) is a critical point, but not a local extreme point.

    \(\dst\frac{1}{6}\left(\frac{\pi}{20}\right)^3\) \(\dst\frac{1}{8^3}\) \(\dst\frac{\pi^2}{512\sqrt2}\)

    \(\dst\frac{1}{4(63)^4}\)

    \(M_3h/3\), where \(M_3=\sup_{|x-c|\le h}|f^{(3)}(c)|\)\

    \(M_4h^2/12\) where \(M_4=\sup_{|x-c|\le h}|f^{(4)}(c)|\)

    \(k=-h/2\)

    monotonic functions

    Let \([a,b]=[0,1]\) and \(P=\{0,1\}\). Let \(f(0)=f(1)=\frac{1}{2}\) and \(f(x)=x\) if \(0<x<1\). Then \(s(P)=0\) and \(S(P)=1\), but neither is a Riemann sum of \(f\) over \(P\).

    \(\frac{1}{2}\), \(-\frac{1}{2}\)

    \(\frac{1}{2}\), \(1\) \(e^b-e^a\) \(1-\cos b\) \(\sin b\)

    \(f(a)[g_1-g(a)]+f(d)(g_2-g_1)+f(b)[g(b)-g_2]\)

    \(f(a)[g_1-g(a)]+f(b)[g(b)-g_p]+\sum_{m=1}^{p-1}f(a_m)(g_{m+1}-g_m)\)

    If \(g\equiv1\) and \(f\) is arbitrary, then \(\int_a^b f(x)\,dg(x)=0\).

    \(\overline{u}=c=\frac{2}{3}\) \(\overline{u}=c=0\)

    \(\overline{u}=(e-2)/(e-1),\ c=\sqrt{\overline{u}}\)

    \(n!\) \(\frac{1}{2}\) divergent \(1\) \(-1\)

    \(0\)

    divergent convergent divergent convergent convergent

    divergent

    \(p<2\) \(p<1\) \(p>-1\) \(-1<p<2\) none none

    \(p<1\)

    \(p-q<1\) \(p,q<1\) \(-1<p<2q-1\) \(q>-1\), \(p+q>1\) \(p+q>1\)

    \(q+1<p<3q+1\)

    \(\deg g-\deg f\ge 2\)

    \(2\) \(1\) \(0\) \(1/2 \quad\) \(1/2 \quad\) \(1/2 \quad\)

    \(1/2 \quad\)

    \(\sqrt A\) \(1\) \(1\) \(1\) \(-\infty\)

    \(0\)

    If \(s_n=1\) and \(t_n=-1/n\), then \((\lim_{n\to\infty}s_n)/(\lim_{n\to\infty}t_n)=1/0=\infty\), but \(\lim_{n\to\infty}s_n/t_n=-\infty\).

    \(\infty\), \(0\) \(\infty\), \(-\infty\) if \(|r|>1\); \(2\), \(-2\) if \(r=-1\); \(0\), \(0\) if \(r=1\); \(1\), \(-1\) if \(|r|<1\) \(\infty\), \(-\infty\) if \(r<-1\); \(0\), \(0\) if \(|r|<1\); \(\frac{1}{2}\), \(\frac{1}{2}\) if \(r=1\); \(\infty\),\(\infty\) if \(r>1\) \ \(\infty\), \(\infty\)

    \(|t|\), \(-|t|\)

    \(1\), \(-1\) \(2\), \(-2\) \(3\), \(-1\)

    \(\sqrt{3}/2\), \(-\sqrt{3}/2\)

    If \(\{s_n\}=\{1,0,1,0, \dots\}\), then \(\lim_{n\to\infty}t_n=\frac{1}{2}\)

    \(\lim_{m\to\infty}s_{2m}=\infty\), \(\lim_{m\to\infty}s_{2m+1}=-\infty\)\ \(\lim_{m\to\infty}s_{4m}=1\), \(\lim_{m\to\infty}s_{4m+2}=-1\), \(\lim_{m\to\infty}s_{2m+1}=0\)\ \(\lim_{m\to\infty}s_{2m}=0\), \(\lim_{m\to\infty}s_{4m+1}=1\), \(\lim_{m\to\infty}s_{4m+3}=-1\)\ \(\lim_{n\to\infty}s_{n}=0\) \(\lim_{m\to\infty}s_{2m}=\infty\), \(\lim_{m\to\infty}s_{2m+1}=0\)\

    \(\lim_{m\to\infty}s_{8m}=\lim_{m\to\infty}s_{8m+2}=1\), \(\lim_{m\to\infty}s_{8m+1}=\sqrt2\),\ \(\lim_{m\to\infty}s_{8m+3}=\lim_{m\to\infty}s_{8m+7}=0\), \(\lim_{m\to\infty}s_{8m+5}=-\sqrt2\),\ \(\lim_{m\to\infty}s_{8m+4}=\lim_{m\to\infty}s_{8m+6}=-1\)

    \(\{1,2,1,2,3,1,2,3,4,1,2,3,4,5, \dots\}\)

    Let \(\{t_n\}\) be any convergent sequence and \(\{s_n\}=\{t_1,1,t_2,2, \dots,t_n,n, \dots\}\).

    No; consider \(\sum 1/n\)

    convergent convergent divergent divergent \ convergent convergent divergent

    convergent

    \(p>1\) \(p>1\)

    \(p>1\)

    convergent convergent if \(0<r<1\), divergent if \(r\ge1\)\ divergent convergent divergent

    convergent

    convergent convergent convergent

    convergent

    divergent convergent if and only if \(0<r<1\) or \(r=1\) and \(p<-1\) convergent convergent

    convergent

    divergent convergent convergent

    convergent if \(\alpha<\beta-1\), divergent if \(\alpha\ge\beta-1\)

    divergent convergent convergent

    convergent

    \(\sum(-1)^n\) \(\sum(-1)^n/n\), \(\sum\dst\left[\frac{(-1)^n}{ n}+\frac{1}{ n\log n}\right]\)\ \(\sum(-1)^n2^n\)

    \(\sum(-1)^n\)

    conditionally convergent conditionally convergent absolutely convergent

    absolutely convergent

    %\begin{exercisepatch1}

    Let \(k\) and \(s\) be the degrees of the numerator and denominator, respectively. If \(|r|=1\), the series converges absolutely if and only if \(s\ge k+2\). The series converges conditionally if \(s=k+1\) and \(r=-1\), and diverges in all other cases, where \(s\ge k+1\) and \(|r|=1\).

    \(\sum(-1)^n/\sqrt n\) \(0\)

    \(2A-a_0\)

    \(F(x)=0,\ |x|\le1\) \(F(x)=0,\ |x|\le1\) \ \(F(x)=0,\ -1<x\le1\) \(F(x)=\sin x,\ -\infty<x<\infty\)\ \(F(x)=1,\ -1<x\le1\); \(F(x)=0,\ |x|>1\) \(F(x)=x,\ -\infty<x<\infty\)\ \(F(x)=x^2/2,\ -\infty<x<\infty\) \(F(x)=0,\ -\infty<x<\infty\)\

    \(F(x)=1,\ -\infty<x<\infty\)

    \(F(x)=0\) \(F(x)=1,\ |x|<1\); \(F(x)=0,\ |x|>1\) \

    \(F(x)=\sin x/x\)

    \(F_n(x)=x^n\); \(S_k=[-k/(k+1),k/(k+1)]\)

    \([-1,1]\) \([-r,r]\cup\{1\}\cup\{-1\},\ 0<r<1\) \([-r,r]\cup\{1\},\ 0<r<1\) \ \([-r,r],\ r>0\) \((-\infty,-1/r]\cup[-r,r]\cup[1/r,\infty)\cup\{1\},\ 0<r<1\)\ \([-r,r],\ r>0\) \([-r,r],\ r>0\) \((-\infty,-r]\cup[r,\infty)\cup\{0\},\ r>0\) \

    \([-r,r],\ r>0\)

    Let \(S=(0,1]\), \(F_n(x)=\sin(x/n)\), \(G_n(x)=1/x^2\); then \(F=0\), \(G=1/x^2\), and the convergence is uniform, but \(\|F_nG_n\|_S=\infty\).

    \(3\) \(1\) \(\frac{1}{2}\)

    \(e-1\)

    compact subsets of \((-\frac{1}{2},\infty)\) \([-\frac{1}{2},\infty)\) closed subsets of \(\dst\left(\frac{1-\sqrt5}{2},\frac{1+\sqrt5}{2}\right)\) \((-\infty,\infty)\) \([r,\infty),\ r>1\)

    compact subsets of \((-\infty,0)\cup(0,\infty)\)

    Let \(S=(-\infty,\infty)\), \(f_n=a_n\) (constant), where \(\sum a_n\) converges conditionally, and \(g_n=|a_n|\).

    ``absolutely"

    means that \(\sum|f_n(x)|\) converges pointwise and \(\sum f_n(x)\) converges uniformly on \(S\), while

    means that \(\sum|f_n(x)|\) converges uniformly on \(S\).

    \(\dst{\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{ n!(2n+1)}}\)

    \(\dst{\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)(2n+1)!}}\)

    \(1/3e\) \(1\) \(\frac{1}{3}\) \(1\)

    \(\infty\)

    \(1\) \(\frac{1}{2}\) \(\frac{1}{4}\) \(4\) \(1/e\)

    \(1\)

    \(x(1+x)/(1-x)^3\) \(e^{-x^2}\) \ \(\dst{\sum_{n=1}^\infty\frac{(-1)^{n-1}}{ n^2} }(x-1)^n;\ R=1\)

    \(\mbox{Tan}^{-1}x=\dst{\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)}};\ f^{(2n)}(0)=0;\ f^{(2n+1)}(0)=(-1)^2(2n)!\);

    \(\dst{\frac{\pi}{6}=\mbox{Tan}^{-1}\frac{1}{\sqrt3}=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)3^{n+1/2}}}\)

    \(\cosh x=\dst{\sum_{n=0}^\infty\frac{x^{2n}}{(2n)!}}\), \(\sinh x=\dst{\sum_{n=0}^\infty\frac{x^{2n+1}}{(2n+1)!}}\)

    \((1-x)\sum_{n=0}^\infty x^n=1\) converges for all \(x\)

    \(\dst{x+x^2+\frac{x^3}{3}-\frac{3x^5}{40}+\cdots}\) \(\dst{1-x-\frac{x^2}{2}+\frac{5x^3}{6}+\cdots}\) \(\dst{1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{721x^6}{720}+\cdots}\)

    \(\dst{x^2-\frac{x^3}{2}+\frac{x^4}{6}- \frac{x^5}{6}+\cdots}\)

    \(\dst{1+x+\frac{2x^2}{3}+\frac{x^3}{3}+\cdots}\) \(\dst{1-x-\frac{x^2}{2}+\frac{3x^3}{2}+\cdots}\) \(\dst{1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\cdots}\) \(\dst{1+\frac{x^2}{6}+\frac{7x^4}{360}+\frac{31x^6}{15120} +\cdots}\)

    \(\dst{2-x^2+\frac{x^4}{12}-\frac{x^6}{360}+\cdots}\)

    \(\dst{F(x)=\frac{5}{(1-3x)(1+2x)}=\frac{3}{1-3x}+\frac{2}{1+2x}= \sum_{n=0}^\infty[3^{n+1}-(-2)^{n+1}]x^n}\) \(1\)

    \((3,0,3,3)\) \((-1,-1,4)\)

    \((\frac{1}{6},\frac{11}{12},\frac{23}{24},\frac{5}{36})\)

    \(\sqrt{15}\) \(\sqrt{65}/12\) \(\sqrt{31}\)

    \(\sqrt3\)

    \(\sqrt{89}\) \(\sqrt{166}/12\) \(3\)

    \(\sqrt{31}\)

    \(12\) \(\frac{1}{32}\)

    \(27\)

    \(\mathbf{X}=\mathbf{X}_0+t\mathbf{U}\ (-\infty<t<\infty)\) in all cases.

    \(\dots\mathbf{U}\) and \(\mathbf{X}_1-\mathbf{X}_0\) are scalar multiples of \(\mathbf{V}\).

    \(\mathbf{X}=(1,-3,4,2)+t(1,3,-5,3)\)

    \(\mathbf{X}=(3,1,-2,1,4,)+t(-1,-1,1,3,-7)\)

    \(\mathbf{X}=(1,2,-1)+t(-1,-3,0)\)

    \(5\) \(2\)

    \(1/2\sqrt5\)

    \(\set{(x_1,x_2,x_3,x_4)}{|x_i|\le3\ (i=1,2,3) \mbox{ with at least one equality}}\) \(\set{(x_1,x_2,x_3,x_4)}{|x_i|\le3\ (i=1,2,3)}\)

    \(S\)

    \(\set{(x_1,x_2,x_3,x_4)}{|x_i|>3 \mbox{ for at least one of }i=1,2,3}\)

    \(S\) \(S\) \(\emptyset\)

    \(\set{(x,y,z)}{z\ne1\mbox{ or }x^2+y^2>1}\)

    open neither

    closed

    \((\pi,1,0)\)

    \((1,0,e)\)

    \(6\) \(6\) \(2\sqrt5\) \(2L\sqrt n\)

    \(\infty\)

    \(\set{(x,y)}{x^2+y^2=1}\)

    \(\dots\) if for \(A\) there is an integer \(R\) such that \(|\mathbf{X}_r|>A\) if \(r\ge R\).

    \(10\) \(3\) \(1\) \(0\) \(0\)

    \(0\)

    \(a/(1+a^2)\)

    \(\infty\) \(\infty\) no \(-\infty\)

    no

    \(0\) \(0\) none \(0\)

    none

    if \(D_f\) is unbounded and for each \(M\) there is an \(R\) such that \(f(\mathbf{X})>M\) if \(\mathbf{X}\in D_f\) and \(|\mathbf{X}|>R\). Replace $>M$'' by\(<M\)’’ in

    .

    \(\lim_{\mathbf{X}\to\mathbf{0}}f(\mathbf{X})=0\) if \(a_1+a_2+\cdots+a_n>b\); no limit if \(a_1+a_2+\cdots+a_n\le b\) and \(a_1^2+a_2^2+\cdots+a_n^2\ne0\); \(\lim_{\mathbf{X}\to\mathbf{0}}f(\mathbf{X})=\infty\) if \(a_1=a_2=\cdots=a_n=0\) and \(b>0\).

    No; for example, \(\lim_{x\to\infty}g(x,\sqrt x)=0\).

    \(\mathbb R^3\) \(\mathbb R^2\) \(\mathbb R^3\) \(\mathbb R^2\) \(\set{(x,y)}{x\ge y}\)

    \(\mathbb R^n\)

    \(\mathbb R^3-\{(0,0,0)\}\) \(\mathbb R^2\) \(\mathbb R^2\) \(\mathbb R^2\)

    \(\mathbb R^2\)

    \(f(x,y)=xy/(x^2+y^2)\) if \((x,y)\ne(0,0)\) and \(f(0,0)=0\)

    \(\dst{\frac{2}{\sqrt3}(x+y\cos x-xy\sin x)-2\sqrt\frac{2}{3}(x\cos x)}\) \(\dst{\frac{1-2y}{\sqrt3}e^{-x+y^2+2z}}\) \(\dst{\frac{2}{\sqrt n}(x_1+x_2+\cdots+x_n)}\)

    \(1/(1+x+y+z)\)

    \(\phi_1^2\phi_2\) \(-5\pi/\sqrt6\) \(-2e\) \(0\)

    \(0\)

    \(f_x=f_y=1/(x+y+2z)\), \(f_z=2/(x+y+2z)\)

    \(f_x=2x+3yz+2y\), \(f_y=3xz+2x\), \(f_z=3xy\) \(f_x=e^{yz}\), \(f_y=xze^{yz}\), \(f_z=xye^{yz}\)

    \(f_x=2xy\cos x^2y\), \(f_y=x^2\cos x^2y\), \(f_z=1\)

    \(f_{xx}=f_{yy}=f_{xy}=f_{yx}=-1/(x+y+2z)^2\), \(f_{xz}=f_{zx}=f_{yz}=f_{zy}=\) \(-2/(x+y+2z)^2\), \(f_{zz}=-4/(x+y+2z)^2\)

    \(f_{xx}=2\), \(f_{yy}=f_{zz}=0\), \(f_{xy}=f_{yx}=3z+2\), \(f_{xz}=f_{zx}=3y\), \(f_{yz}=f_{zy}=3x\)

    \(f_{xx}=0\), \(f_{yy}=xz^2e^{yz}\), \(f_{zz}=xy^2e^{yz}\), \(f_{xy}=f_{yx}=ze^{yz}\), \(f_{xz}=f_{zx}=ye^{yz}\), \(f_{yz}=f_{zy}=xe^{yz}\)

    \(f_{xx}=2y\cos x^2y-4x^2y^2\sin x^2y\), \(f_{yy}=-x^4\sin x^2y\), \(f_{zz}=0\), \(f_{xy}=f_{yx}=2x\cos x^2y-2x^3y\sin x^2y\), \(f_{xz}=f_{zx}=f_{yz}=f_{zy}=0\)

    \(f_{xx}(0,0)=f_{yy}(0,0)=0\), \(f_{xy}(0,0)=-1\), \(f_{yx}(0,0)=1\)\

    \(f_{xx}(0,0)=f_{yy}(0,0)=0\), \(f_{xy}(0,0)=-1\), \(f_{yx}(0,0)=1\)

    \(f(x,y)=g(x,y)+h(y)\), where \(g_{xy}\) exists everywhere and \(h\) is nowhere differentiable.

    \(df=(3x^2+4y^2+2y\sin x+2xy\cos x)\,dx+(8xy+2x\sin x)\, dy\),\ \(d_{\mathbf{X}_0}f=16\,dx\), \((d_{\mathbf{X}_0}f)(\mathbf{X}-\mathbf{X}_0)=16x\) \ \(df=-e^{-x-y-z}\,(dx+dy+dz)\), \(d_{\mathbf{X}_0}f=-dx-dy-dz\), \ \((d_{\mathbf{X}_0}f)(\mathbf{X}- \mathbf{X}_0)=-x-y-z\) \ \(df=(1+x_1+2x_2+\cdots+nx_n)^{-1}\sum_{j=1}^nj\,dx_j\), \(d_{\mathbf{X}_0}f=\sum_{j=1}^n j\,dx_j\), \ \((d_{\mathbf{X}_0}f)(\mathbf{X}-\mathbf{X}_0)=\sum_{j=1}^n jx_j\),\

    \(df=2r|\mathbf{X}|^{2r-2}\sum_{j=1}^nx_j\,dx_j\), \(d_{\mathbf{X}_0}f=2rn^{r-1}\sum_{j=1}^n dx_j\), \ \((d_{\mathbf{X}_0}f)(\mathbf{X}- \mathbf{X}_0)=2rn^{r-1}\sum_{j=1}^n (x_j-1)\),

    The unit vector in the direction of \((f_{x_1}(\mathbf{X}_0), f_{x_2}(\mathbf{X}_0), \dots,f_{x_n}(\mathbf{X}_0))\) provided that this is not \(\mathbf{0}\); if it is \(\mathbf{0}\), then \(\partial f(\mathbf{X}_0)/\partial\boldsymbol{\Phi}=0\) for every \(\boldsymbol{\Phi}\).

    \(z=2x+4y-6\) \(z=2x+3y+1\) \(z=(\pi x)/2+y-\pi/2\)

    \(z=x+10y+4\)

    \(5\,du+34\,dv\) \(0\) \(6\,du-18\,dv\)

    \(8\,du\)

    \(h_r=f_x\cos\theta+f_y\sin\theta\), \(h_\theta=r(-f_x\sin\theta+f_y\cos\theta)\), \(h_z=f_z\)

    \(h_r=f_x\sin\phi\cos\theta+f_y\sin\phi\sin\theta+f_z\cos\phi\), \(h_\theta=r\sin\phi(-f_x\sin\theta+f_y\cos\theta)\), \(h_\phi=r(f_x\cos\phi\cos\theta+f_y\cos\phi\sin\theta-f_z\sin\phi)\)

    \(h_y=g_xx_y+g_y+g_ww_y\), \(h_z=g_xx_z+g_z+g_ww_z\)

    \(h_{rr}=f_{xx}\sin^2\phi\cos^2\theta+f_{yy}\sin^2\phi\sin^2\theta+ f_{zz}\cos^2\phi+f_{xy}\sin^2\phi\sin2\theta+f_{yz}\sin2\phi\sin\theta+ f_{xz}\sin2\phi\cos\theta\),

    \(\dst h_{r\theta} =(-f_x\sin\theta+f_y\cos\theta)\sin\phi+\frac{r}{2}(f_{yy}- f_{xx})\sin^2\phi\sin2\theta +rf_{xy}\sin^2\phi\cos2\theta+\frac{r}{2} (f_{zy}\cos\theta-f_{zx}\sin\theta)\sin2\phi\)

    \(\dst{1+x+\frac{x^2}{2}-\frac{y^2}{2}+\frac{x^3}{6}-\frac{xy^2}{2}}\)

    \(\dst{1-x-y+\frac{x^2}{2}+xy+\frac{y^2}{2}-\frac{x^3}{6}-\frac{x^2y}{2} -\frac{xy^2}{2}-\frac{y^3}{6}}\)\ \(0\)

    \(xyz\)

    \((d_{(0,0)}^2p)(x,y)=(d_{(0,0)}^2q)(x,y)=2(x-y)^2\)

    \(\left[\begin{array}{rrr}3&4&6\\2&-4&2\\7&2&3\end{array}\right]\)

    \(\left[\begin{array}{rr}2&4\\3&-2\\7&-4\\6&1\end{array}\right]\)

    \(\left[\begin{array}{rrrr}8&8&16&24\\0&0&4&12\\ 12&16&28&44\end{array}\right]\)

    \(\left[\begin{array}{rrr}-2&-6&0\\0&-2&-4\\-2&2&-6\end{array}\right]\)

    \(\left[\begin{array}{rrr}-2&2&6\\6&7&-3\\0&-2&6\end{array}\right]\)

    \(\left[\begin{array}{rr}-1&7\\3&5\\5&14\end{array}\right]\)

    \(\left[\begin{array}{rr}13&25\\16&31\\16&25\end{array}\right]\)

    \(\left[\begin{array}{r}29\\50\end{array}\right]\)

    \(\mathbf{A}\) and \(\mathbf{B}\) are square of the same order.

    \(\left[\begin{array}{rrr}7&3&3\\4&7&7\\6&-9&1\end{array}\right]\)

    \(\left[\begin{array}{rr}14&10\\6&-2\\14&2\end{array}\right]\)

    \(\left[\begin{array}{rrr}-7&6&4\\-9&7&13\\5&0&-14\end{array}\right]\), \(\left[\begin{array}{rrr}-5&6&0\\4&-12&3\\4&0&3\end{array}\right]\)

    \(\left[\begin{array}{rrr}6xyz&3xz^2&3x^2y\end{array}\right]\);
    \(\left[\begin{array}{rrr}-6&3&-3\end{array}\right]\)

    \(\cos(x+y)\left[\begin{array}{rr}1&1\end{array}\right]\); \(\left[\begin{array}{rr}0&0\end{array}\right]\)

    \(\left[\begin{array}{rrr}(1-xz)ye^{-xz}&xe^{-xz}&-x^2ye^{-xz} \end{array}\right]\); \(\left[\begin{array}{rrr}2&1&-2\end{array}\right]\)\

    \(\sec^2(x+2y+z)\left[\begin{array}{rrr}1&2&1\end{array}\right]\); \(\left[\begin{array}{rrr}2&4&2\end{array}\right]\)

    \(|\mathbf{X}|^{-1}\left[\begin{array}{rrrr}x_1&x_2&\cdots&x_n\end{array}\right]\); \(\dst\frac{1}{\sqrt n}\left[\begin{array}{rrrr}1&1&\cdots&1\end{array}\right]\)

    \((2,3,-2)\) \((2,3,0)\) \((-2,0,-1)\)

    \((3,1,3,2)\)

    \(\dst\frac{1}{10}\left[\begin{array}{rr}4&2\\-3&1\end{array}\right]\)

    \(\dst\frac{1}{2}\left[\begin{array}{rrr}-1&1&2\\3&1&-4\\-1&-1&2 \end{array}\right]\)

    \(\dst\frac{1}{25}\left[\begin{array}{rrr}4&3&-5\\6&-8&5\\-3&4&10 \end{array}\right]\)

    \(\dst\frac{1}{2}\left[\begin{array}{rrr}1&-1&1\\-1&1&1\\1&1&-1 \end{array}\right]\)

    \(\dst\frac{1}{7}\left[\begin{array}{rrrr}3&-2&0&0\\2&1&0&0\\0&0&2&-3 \\0&0&1&2\end{array}\right]\)

    \(\dst\frac{1}{10}\left[\begin{array}{rrrr}-1&-2&0&5 \\-14&-18&10&20\\21&22&-10&-25\\17&24&-10&-25\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})=\left[\begin{array}{ccc} 2x&1&2\\-\sin(x+y+z)&-\sin(x+y+z)&-\sin(x+y+z)\\[2\jot] yze^{xyz}&xze^{xyz}&xye^{xyz}\end{array}\right]\);\[2] \(J\mathbf{F}(\mathbf{X})=e^{xyz}\sin(x+y+z) [x(1-2x)(y-z)-z(x-y)]\);\[2] \(\mathbf{G}(\mathbf{X})=\left[\begin{array}{r}0\\1\\1\end{array}\right] +\left[\begin{array}{rrr}2&1&2\\0&0&0\\0&0&-1\end{array}\right] \left[\begin{array}{c}x-1\\y+1\\z\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})=\left[\begin{array}{rr}e^x\cos y&-e^x\sin y\\e^x\sin y&e^x\cos y\end{array}\right]\); \(J\mathbf{F}(\mathbf{X})=e^{2x}\);\[2] \(\mathbf{G}(\mathbf{X})=\left[\begin{array}{r}0\\1\end{array}\right] +\left[\begin{array}{rr}0&-1\\1&0\end{array}\right] \left[\begin{array}{c}x\\y-\pi/2\end{array}\right]\)\[2]

    \(\mathbf{F}'(\mathbf{X})= \left[\begin{array}{rrr}2x&-2y&0\\0&2y&-2z\\-2x&0&2z\end{array}\right]\); \(J\mathbf{F}=0\);\[2] \(\mathbf{G}(\mathbf{X})= \left[\begin{array}{rrr}2&-2&0\\0&2&-2\\-2&0&2\end{array}\right] \left[\begin{array}{c}x-1\\y-1\\z-1\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})= \left[\begin{array}{ccc} (x+y+z+1)e^x&e^x&e^x\\(2x-x^2-y^2)e^{-x} &2ye^{-x}&0\end{array}\right]\)

    \(\mathbf{F}'(\mathbf{X})=\left[\begin{array}{c}g_1'(x)\\g_2'(x)\\\vdots\\ g_n'(x)\end{array}\right]\) \

    \(\mathbf{F}'(r,\theta)= \left[\begin{array}{ccc}e^x\sin yz&ze^x\cos yz&ye^x\cos yz\\ze^y\cos xz&e^y\sin xz&xe^y\cos xz\\ye^z\cos xy&xe^z\cos xy&e^z\sin xy\end{array}\right]\)

    \(\mathbf{F}'(r,\theta)=\left[\begin{array}{rr}\cos\theta&-r\sin\theta \\\sin\theta&r\cos\theta\end{array}\right]\); \(J\mathbf{F}(r,\theta)=r\)\[2]

    \(\mathbf{F}'(r,\theta,\phi)=\left[\begin{array}{ccc}\cos\theta\cos\phi& -r\sin\theta\cos\phi&-r\cos\theta\sin\phi\\\sin\theta\cos\phi& \phantom{-}r\cos\theta\cos\phi&-r\sin\theta\sin\phi\\\sin\phi&0&r\cos\phi \end{array}\right]\);\ \(J\mathbf{F}(r,\theta,\phi)=r^2\cos\phi\)\[2]

    \(\mathbf{F}'(r,\theta,z)=\left[\begin{array}{ccc}\cos\theta&-r\sin\theta&0 \\\sin\theta&\phantom{-}r\cos\theta&0\\0&0&1\end{array}\right]\); \(J\mathbf{F}(r,\theta,z)=r\)

    \(\left[\begin{array}{rrr}0&0&4\\0&-\frac{1}{2}&0\end{array}\right]\) \(\left[\begin{array}{rr}-18&0\\2&0\end{array}\right]\)

    \(\left[\begin{array}{rr}9&-3\\3&-8\\1&0\end{array}\right]\)

    \(\left[\begin{array}{rrr}4&-3&1\\0&1&1\end{array}\right]\) \(\left[\begin{array}{rr}2&0\\2&0\end{array}\right]\)

    \(\left[\begin{array}{rr}5&10\\9&18\\-4&-8\end{array}\right]\)

    \([1,\pi/2]\) \([1,2\pi]\) \([1,\pi]\) \([2\sqrt2,9\pi/4]\)

    \([\sqrt2,3\pi/4]\)

    \([1,-3\pi/2]\) \([1,-2\pi]\) \([1,-\pi]\) \([2\sqrt2,-7\pi/4]\)

    \([\sqrt2,-5\pi/4]\)

    Let \(f(x)=x\ (0\le x\le\frac{1}{2})\), \(f(x)=x-\frac{1}{2}\ (\frac{1}{2}<x\le1)\); then \(f\) is locally invertible but not invertible on \([0,1]\).

    \(\mathbf{F}(S)=\set{(u,v)}{-\pi+2\phi<\arg(u,v)<\pi+2\phi}\), where \(\phi\) is an argument of \((a,b)\);

    \(\mathbf{F}_S^{-1}(u,v)=(u^2+v^2)^{1/4} \left[\begin{array}{r}\cos(\arg(u,v)/2) \\[2\jot]\sin(\arg(u,v)/2)\end{array}\right],\ 2\phi-\pi<\arg(u,v)<2\phi+\pi\)

    \(\left[\begin{array}{c}x\\y\end{array}\right]= \dst\frac{1}{10}\left[\begin{array}{c}\phantom{3}u-2v\\3u+4v\end{array}\right]\); \((\mathbf{F}^{-1})'=\dst\frac{1}{10} \left[\begin{array}{rr}1&-2\\3&4\end{array}\right]\)

    \(\left[\begin{array}{c}x\\y\\z\end{array}\right]= \dst\frac{1}{2}\left[\begin{array}{c}u+2v+3w\\u-w\\u+v+2w\end{array}\right]\); \((\mathbf{F}^{-1})'=\dst\frac{1}{2} \left[\begin{array}{rrr}1&2&3\\1&0&-1\\1&1&2\end{array}\right]\)

    \(\mathbf{G}_1(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}\sqrt{u+v}\\ \sqrt{u-v}\end{array}\right]\), \(\mathbf{G}_1'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} 1/\sqrt{u+v}&1/\sqrt{u+v}\\ 1/\sqrt{u-v}&-1/\sqrt{u-v}\\ \end{array}\right]\)

    \(\mathbf{G}_2(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}-\sqrt{u+v}\\ \sqrt{u-v}\end{array}\right]\), \(\mathbf{G}_2'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} -1/\sqrt{u+v}&-1/\sqrt{u+v}\\ 1/\sqrt{u-v}&-1/\sqrt{u-v}\\ \end{array}\right]\)

    \(\mathbf{G}_3(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}\sqrt{u+v}\\ -\sqrt{u-v}\end{array}\right]\), \(\mathbf{G}_3'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} 1/\sqrt{u+v}&1/\sqrt{u+v}\\ -1/\sqrt{u-v}&1/\sqrt{u-v}\\ \end{array}\right]\)

    \(\mathbf{G}_4(u,v)=\dst\frac{1}{\sqrt2} \left[\begin{array}{r}-\sqrt{u+v}\\ -\sqrt{u-v}\end{array}\right]\), \(\mathbf{G}_4'(u,v)=\dst\frac{1}{2\sqrt2} \left[\begin{array}{rr} -1/\sqrt{u+v}&-1/\sqrt{u+v}\\ -1/\sqrt{u-v}&1/\sqrt{u-v}\\ \end{array}\right]\)

    From solving \(x=r\cos\theta\), \(y=r\sin\theta\) for \(\theta=\arg(x,y)\). Each equation is satisfied by angles that are not arguments of \((x,y)\), since none of the formulas identifies the quadrant of \((x,y)\) uniquely. Moreover,

    does not hold if \(x=0\).

    \(\left[\begin{array}{c}x\\y\end{array}\right]= \mathbf{G}(u,v)=(u^2+v^2)^{1/4} \left[\begin{array}{r}\cos[\frac{1}{2}\arg(u,v)] \\[2\jot] \sin(\arg(u,v)/2)\end{array}\right]\),

    where \(\beta-\pi/2<\arg(u,v)<\beta+\pi/2\) and \(\beta\) is an argument of \((a,b)\);

    \(\mathbf{G}'(u,v)=\dst\frac{1}{2(x^2+y^2)} \left[\begin{array}{rr}x&y\\-y&x\end{array}\right]\)

    If \(\mathbf{F}(x_1,x_2, \dots,x_n)=(x_1^3,x_2^3, \dots,x_n^3)\), then \(\mathbf{F}\) is invertible, but\ \(J\mathbf{F}(\mathbf{0})~=0\).

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{r}1\\-1\end{array}\right] -\dst\frac{1}{25}\left[\begin{array}{rr}5&5\\3&8\end{array}\right] \left[\begin{array}{c}u+5\\v-4\end{array}\right]\)

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{r}1\\1\end{array}\right] +\dst\frac{1}{6}\left[\begin{array}{rr}4&-2\\-3&3\end{array}\right] \left[\begin{array}{c}u-2\\v-3\end{array}\right]\)

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{r}0\\1\\1\end{array}\right]+ \left[\begin{array}{rrr}0&-1&1\\-1&1&0\\1&0&0\end{array}\right] \left[\begin{array}{c}u-1\\v-1\\w-2\end{array}\right]\)

    \(\mathbf{A}(\mathbf{U})= \left[\begin{array}{c}1\\\pi/2\\\pi\end{array}\right]+ \left[\begin{array}{rrr}0&-1&0\\1&0&0\\0&0&-1\end{array}\right] \left[\begin{array}{c}u\\v+1\\w\end{array}\right]\)

    \(\mathbf{G}'(x,y,z)= \left[\begin{array}{ccc} \cos\theta\cos\phi&\sin\theta\cos\phi&\sin\phi\\[2\jot] -\dst\frac{\sin\theta}{ r\cos\phi}&\dst\frac{\cos\theta}{ r\cos\phi}&0\\[2\jot] -\dst\frac{1}{ r}\cos\theta\sin\phi&-\dst\frac{1}{ r}\sin\theta\sin\phi&\dst\frac{1}{ r}\cos\phi\end{array}\right]\)

    \(\mathbf{G}'(x,y,z)= \left[\begin{array}{ccc}\cos\theta&\sin\theta&0\\[2\jot] -\dst\frac{1}{ r}\sin\theta&\dst\frac{1}{ r}\cos\theta&0\\[2\jot] 0&0&1\end{array}\right]\)

    \(\left[\begin{array}{c}u\\v\end{array}\right]= \dst\frac{1}{2}\left[\begin{array}{rr}-3&4\\1&-2\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]\)

    \(\left[\begin{array}{c}u\\v\\w\end{array}\right]=\dst -\frac{1}{2} \left[\begin{array}{rr} 3&3\\-1&2\\2&3 \end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]\)

    \(\left[\begin{array}{c}u\\v\end{array}\right]= \dst\frac{1}{5}\left[\begin{array}{rr}2&-1\\-1&3\end{array}\right] \left[\begin{array}{c}-y+\sin x\\-x+\sin y\end{array}\right]\)

    \(u=-x\), \(v=-y\), \(z=-w\)

    \(f_i(\mathbf{X},\mathbf{U})=\dst\left(\sum_{j=1}^n a_{ij}(x_j-x_{j0})\right)^r-(u_i-u_{i0})^s\), \(1\le i\le m\), where \(r\) and \(s\) are positive integers and not all \(a_{ij}=0\). \(r=s=3\); \(r=1\), \(s=3\);

    \(r=s=2\)

    \(u_x(1,1)=-\frac{5}{8}\), \(u_y(1,1)=-\frac{1}{2}\)

    \(u_x(1,1,1)=\frac{5}{8}\), \(u_y(1,1,1)=-\frac{9}{8}\), \(u_z(1,1,1)=\frac{1}{2}\)

    \(u(1,2)=0\), \(u_x(1,2)=u_y(1,2)=-4\)

    \(u(-1,-2)=2\), \(u_x(-1,-2)=1\), \(u_y(-1,-2)=-\frac{1}{2}\)

    \(u(\pi/2,\pi/2)=u_x(\pi/2,\pi/2)=u_y(\pi/2,\pi/2)=0\)

    \(u(1,1)=1\), \(u_x(1,1)=u_y(1,1)=-1\)

    \(u_1(1,1)=1\),\(\dst\frac{\partial u_1(1,1)}{\partial x}=5\), \(\dst\frac{\partial u_1(1,1)}{\partial y}=2\)

    \(u_2(1,1)=2\), \(\dst\frac{\partial u_2(1,1)}{\partial x}=-14\); \(\dst\frac{\partial u_2(1,1)}{\partial y}=-2\)

    \(u_k(0,\pi)=(2k+1)\pi/2\), \(\dst\frac{\partial u_k(0,\pi)}{\partial x}=0\), \(\dst\frac{\partial u_k(0,\pi)}{\partial y}=-1\),\(k=\) integer

    \(\dst\frac{1}{5}\left[\begin{array}{rrr}-1&-2&1\\-1&-2&1\end{array}\right]\) \(u'(0)=3\), \(v'(0)=-1\)

    \(\dst\frac{1}{6}\left[\begin{array}{rr}5&5\\-5&-5\\6&6\end{array}\right]\)

    \(\mathbf{U}_1(1,1)=\left[\begin{array}{r}3\\1\end{array}\right]\), \(\mathbf{U}_1'(1,1)=\left[\begin{array}{rr}1&3\\-1&2\end{array}\right]\);

    \(\mathbf{U}_2(1,1)=-\left[\begin{array}{r}3\\1\end{array}\right]\), \(\mathbf{U}_2'(1,1)=-\left[\begin{array}{rr}1&3\\-1&2\end{array}\right]\)

    \(u_x(0,0,0)=2\), \(v_x(0,0,0)= w_x(0,0,0)=-2\)

    \(y_x=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(x,z,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\), \(y_v=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(v,z,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\), \(z_x=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,x,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\),

    \(z_v= -\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,v,u)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\), \(u_x=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,z,x)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\), \(u_v=-\dst\frac{\dst\frac{\partial(f,g,h)}{\partial(y,z,v)}}{ \dst\frac{\partial(f,g,h)}{\partial(y,z,u)}}\)

    \(x=-2y-u\), \(z=-2v\); \(x=-2y-u\), \(v=-\dst\frac{z}{2}\); \(y=-\dst\frac{x}{2}-\dst\frac{u}{2}\), \(z=-2v\); \(y=-\dst\frac{x}{2}-\dst\frac{u}{2}\), \(v=-\dst\frac{z}{2}\); \(z=-2v\), \(u=-x-2y\); \(u=-x-2y\), \(v=-\dst\frac{z}{2}\)

    \(y_x(1,-1,-2)=-\frac{1}{2}\), \(v_u(1,-1,-2)=1\)

    \(u_w(0,-1)=\frac{5}{6}\), \(u_y(0,-1)=0\), \(v_w(0,-1)=-\frac{5}{6}\), \(v_y(0,-1)=0\),\ \(x_w(0,-1)=1\), \(x_y(0,-1)=-1\)

    \(u_x(1,1)=0\), \(u_y(1,1)=0\), \(v_x(1,1)=-1\), \(v_y(1,1)=-1\), \(u_{xx}(1,1)=2\),\ \(u_{xy}(1,1)=1\), \(u_{yy}(1,1)=2\), \(v_{xx}(1,1)=-2\), \(v_{xy}(1,1)=-1\), \(v_{yy}(1,1)=-2\)

    \(u_x(1,-1)=0\), \(u_y(1,-1)=\dst\frac{1}{2}\), \(v_x(1,-1)=-\dst\frac{1}{2}\), \(v_y(1,-1)=0\),\ \(u_{xx}(1,-1)=-\dst\frac{1}{8}\), \(u_{xy}(1,-1)=\dst\frac{1}{8}\), \(u_{yy}(1,-1)=\dst\frac{1}{8}\), \(v_{xx}(1,-1)=-\dst\frac{1}{8}\),\ \(v_{xy}(1,-1)=-\dst\frac{1}{8}\), \(v_{yy}(1,-1)=\dst\frac{1}{8}\)

    \(28\)

    \(\frac{1}{4}\) \(3(b-a)(d-c)\), \(0\) \(\set{(m,n)}{m,n=\mbox{integers}}\)

    \(12\) \(\frac{79}{20}\) \(-1\)

    \((1-\log2)/2\)

    \(\frac{7}{4}\) \(17\) \(\frac{2}{3}(\sqrt2-1)\)

    \(1/4\pi\)

    \(\frac{3}{8}\), \(\frac{5}{8}\) \(\frac{3}{8}\), \(\frac{5}{8}\) \(\frac{3}{4}\), \(\frac{5}{4}\) \(\frac{3}{4}\left(z+\frac{1}{2}\right)\), \(\frac{5}{4}\left(z+\frac{1}{2}\right)\)

    \(z+\frac{1}{2}\), \(1\)

    \(-285\) \(0\) \(0\)

    \(\frac{1}{4}(e-\frac{5}{2})\)

    \(324\) \(\frac{1}{6}\)

    \(1\) \(\frac{52}{15}\)

    \(36\) \(1\) \(\frac{64}{3}\)

    \((e^6+17)/2\)

    \(\frac{2}{27}\) \(\frac{1}{2}(e-\frac{5}{2})\) \(\frac{1}{24}\)

    \(\frac{1}{36}\)

    \(16\pi\) \(\frac{1}{6}\) \(\frac{128}{21}\)

    \(\frac{\pi}{2}\)

    \(\frac{1}{2}(b_1-a_1)\cdots(b_n-a_n)\sum_{j=1}^n(a_j+b_j)\)

    \(\frac{1}{3}(b_1-a_1)\cdots(b_n-a_n)\sum_{j=1}^n(a_j^2+a_jb_j+b_j^2)\)

    \(2^{-n}(b_1^2-a_1^2)\cdots(b_n^2-a_n^2)\)

    \(\int_{-\sqrt3/2}^{\sqrt3/2}dx\int_{1/2}^{\sqrt{1-x^2}}f(x,y)\,dy\) \(\frac{1}{2}\)

    Let \(S_1\) and \(S_2\) be dense subsets of \(\mathbb R\) such that \(S_1\cup S_2=\mathbb R\).

    \(-1\); \(c\) (constant); \(1\) \((u_2-u_1)(v_2-v_1)/|ad-bc|\)

    \(\frac{5}{6}\) \(\frac{4}{9}\)

    \(\log\frac{5}{2}\) \(3\) \(\frac{1}{2}\) \(\frac{5}{4}e(e-1)\)

    \(\frac{4}{3}\pi abc\) \(2\pi(e^{25}-e^9)\) \(16\pi/3\) \(21/64\)

    \((\pi/8)\log5\) \((\pi/4)(e^4-1)\)

    \(2\pi/15\)

    \(\pi^2a^4/2\)

    \((\beta_1-\alpha_1)\cdots(\beta_n-\alpha_n)/|\det(\mathbf{A})|\) \(|a_1a_2\cdots a_n|V_n\)

    \end{document}

    {}

    Suppose \(f\in C[a,b]\). Acording to the , if \(\epsilon>0\), there is a polynonmial \(p\) such that \(|f(x)-p(x)|<\epsilon\), \(a\le x\le b\). Now suppose that \[ a\le x_{1n} < x_{2n}<\cdots<x_{nn}\le b,\quad a\le y_{1n} < y_{2n}<\cdots<y_{nn}\le b,\quad n\ge 1. \nonumber \] and \[ \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}|x_{in}-y_{in}|=0. \nonumber \] Show that if \(f\in C[a,b]\), then \[ \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}|f(x_{in})-f(y_{in})|=0. \nonumber \]

    By the triangle inequality, \[ |f(x_{in})-f(y_{in})|\le |f(x_{in})-p(x_{in})| +|p(x_{in})-p(y_{in})|+|p(y_{in})-f(y_{in})|, \nonumber \] so \[\begin{equation} \tag{A} |f(x_{in})-f(y_{in})|<|p(x_{in})-p(y_{in})|+2\epsilon. \end{equation} \nonumber \] Let \(M=\max_{a\le x\le b}|p'(x)|\). By the mean value theorem, \[ |p(x_{in})-p(y_{in})|\le M |x_{in}-y_{in}|. \nonumber \] This and (A) imply that \[ \frac{1}{n}\sum_{i=1}^n|f(x_{in})-f(y_{in})|< 2\epsilon+\frac{M}{n}\sum_{i=1}^n|x_{in}-y_{in}|. \nonumber \] From this and (A), \[ \limsup_{n\to\infty} \frac{1}{n}\sum_{i=1}^n|f(x_{in})-f(y_{in})|\le 2\epsilon. \nonumber \] Since \(\epsilon\) is arbitrary, this implies the conclusion.

    {} In the setting of Exercise~1, let \[ y_{in}=a+\frac{i}{n}\sum_{i=1}^{n}(b-a), \quad 1\le i\le n,\quad n\ge 1. \nonumber \] Show that \[ \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n} f(x_{in})=\frac{1}{b-a}\int_{a}^{b}f(x)\,dx. \nonumber \]

    {Solution 2.} Since \(f\in C[a,b]\), \(\int_{a}^{b}f(x)\,dx\) exists (Theorem~3.2.8, p.~133).

    Therefore, from Definition~3.1.1 (p.114), \[ \lim_{n\to\infty}\sum_{i=1}^{n} f(y_{in})=\frac{1}{b-a}\int_{a}^{b}f(x)\,dx. \nonumber \] Since \[ \frac{1}{n}\left| \sum_{i=1}^{n}f(x_{in})-\frac{1}{b-a}\int_{a}^{b}f(x)\,dx\right|\le \frac{1}{n}\sum_{i=1}^{n}|f(x_{in})-f(y_{in})|+ \left|\frac{1}{n} \sum_{i=1}^{n}f(y_{in})-\frac{1}{b-a}\int_{a}^{b}f(x)\,dx\right|, \nonumber \] Exercise1 implies the conclusion.

    Suppose \(g\) is continuous and nondecreasing on \([c,d]\). For

    \end{document}