Skip to main content
Mathematics LibreTexts

2.5: Limit Superior and Limit Inferior

  • Page ID
    49103
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We begin this section with a proposition which follows from Theorem 2.3.1. All sequences in this section are assumed to be of real numbers.

    Proposition \(\PageIndex{1}\)

    Let \(\left\{a_{n}\right\}\) be a bounded sequence. Define

    \[s_{n}=\sup \left\{a_{k}: k \geq n\right\}\]

    and

    \[t_{n}=\inf \left\{a_{k}: k \geq n\right\}.\]

    Then \(\left\{s_{n}\right\}\) and \(\left\{t_{n}\right\}\) are convergent.

    Proof

    If \(n \leq m\), then \(\left\{a_{k}: k \geq m\right\} \subset\left\{a_{k}: k \geq n\right\}\). Therefore, it follows from Theorem 2.5.3 that \(s_{n} \geq s_{m}\) and, so, the sequence \(\left\{s_{n}\right\}\) is decreasing. Since \(\left\{a_{n}\right\}\) is bounded, then so is \(\left\{s_{n}\right\}\). In particular, \(\left\{s_{n}\right\}\) is bounded below. Similarly, \(\left\{t_{n}\right\}\) is increasing and bounded above. Therefore, both sequences are convergent by Theorem 2.3.1. \(\square\)

    Definition \(\PageIndex{1}\): Limit Superior

    Let \(\left\{a_{n}\right\}\) be a sequence. Then the limit superior of \(\left\{a_{n}\right\}\)\), denoted by \(\limsup _{n \rightarrow \infty} a_{n}\), is defined by

    \[\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sup \left\{a_{k}: k \geq n\right\}.\]

    Note that \(\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}\), where \(s_{n}\) is defined in (2.8).

    Similarly, the limit inferior of \(\left\{a_{n}\right\}\), denoted by \(\liminf _{n \rightarrow \infty} a_{n}\), is defined by

    \[\liminf _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty}\left\{a_{k}: k \geq n\right\}.\]

    Note that \(\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} t_{n}\), where \(t_{n}\) is defined in (2.9).

    Theorem \(\PageIndex{2}\)

    If \(\left\{a_{n}\right\}\) is not bounded above, then

    \[\lim _{n \rightarrow \infty} s_{n}=\infty,\]

    where \(\left\{s_{n}\right\}\) is defined in (2.8).

    Similarly, if \(\left\{a_{n}\right\}\) is not bounded below, then

    \[\lim _{n \rightarrow \infty} t_{n}=-\infty,\]

    where \(\left\{t_{n}\right\}\) is defined in (2.9).

    Proof

    Suppose \(\left\{a_{n}\right\}\) is not bounded above. Then for any \(k \in \mathbb{N}\), the set \(\left\{a_{i}: i \geq k\right\}\) is also not bounded above. Thus, \(s_{k}=\sup \left\{a_{i}: i \geq k\right\}=\infty\) for all \(k\). Therefore, \(\lim _{k \rightarrow \infty} s_{k}=\infty\). The proof for the second case is similar. \(\square\)

    Remark \(\PageIndex{3}\)

    By Theorem 2.5.2, we see that if \(\left\{a_{n}\right\}\) is not bounded above, then

    \[\limsup _{n \rightarrow \infty} a_{n}=\infty.\]

    Similarly, if \(\left\{a_{n}\right\}\) is not bounded below, then

    \[\liminf _{n \rightarrow \infty} a_{n}=-\infty.\]

    Theorem \(\PageIndex{4}\)

    Let \(\left\{a_{n}\right\}\) be a sequence and \(\ell \in \mathbb{R}\). The following are equivalent:

    1. \(\limsup _{n \rightarrow \infty} a_{n}=\ell\).
    2. For any \(\varepsilon>0\), there exists \(N \in \mathbb{R}\) such that

    \[a_{n}<\ell+\varepsilon \text { for all } n \geq N,\]

    and there exists a subsequence of \(\left\{a_{n_{k}}\right\}\) of \(\left\{a_{n}\right\}\) such that

    \[\lim _{k \rightarrow \infty} a_{n_{k}}=\ell.\]

    Proof

    Suppose \(\limsup _{n \rightarrow \infty} a_{n}=\ell\). Then \(\lim _{n \rightarrow \infty} s_{n}=\ell\), where \(S_{n}\) is defined as in (2.8). For any \(\varepsilon>0\), there exists \(N \in \mathbb{N}\) such that

    \[\ell-\varepsilon<s_{n}<\ell+\varepsilon \text { for all } n \geq N.\]

    This implies \(s_{N}=\sup \left\{a_{n}: n \geq N\right\}<\ell+\varepsilon\). Thus,

    \[a_{n}<\ell+\varepsilon \text { for all } n \geq N\]

    Moreover, for \(\varepsilon=1\), there exists \(N_{1} \in \mathbb{N}\) such that

    \[\ell-1<s_{N_{1}}=\sup \left\{a_{n}: n \geq N_{1}\right\}<\ell+1.\]

    Thus, there exists \(n_{1} \in \mathbb{N}\) such that

    \[\ell-1<a_{n_{1}}<\ell+1.\]

    For \(\varepsilon=\frac{1}{2}\), there exists \(N_{2} \in \mathbb{N}\) and \(N_{2}>n_{1}\) such that

    \[\ell-\frac{1}{2}<s_{N_{2}}=\sup \left\{a_{n}: n \geq N_{2}\right\}<\ell+\frac{1}{2}.\]

    Thus, there exists \(n_{2}>n_{1}\) such that

    \[\ell-\frac{1}{2}<a_{n_{2}}<\ell+\frac{1}{2}.\]

    In this way, we can construct a strictly increasing sequence \(\left\{n_{k}\right\}\) of positive integers such that

    \[\ell-\frac{1}{k}<a_{n_{k}}<\ell+\frac{1}{k}.\]

    Therefore, \(\lim _{k \rightarrow \infty} a_{n_{k}}=\ell\).

    We now prove the converse. Given any \(\varepsilon>0\), there exists \(N \in \mathbb{N}\) such that

    \[a_{n}<\ell+\varepsilon \text { and } \ell-\varepsilon<a_{n_{k}}<\ell+\varepsilon\]

    for all \(n \geq M\) and \(k \geq N\). Let any \(m \geq N\), we have

    \[s_{m}=\sup \left\{a_{k}: k \geq m\right\} \leq \ell+\varepsilon.\]

    By Lemma 2.1.8, \(n_{m} \geq m\), so we also have

    \[s_{m}=\sup \left\{a_{k}: k \geq m\right\} \geq a_{n_{m}}>\ell-\varepsilon.\]

    Therefore, \(\lim _{m \rightarrow \infty} s_{m}=\limsup _{m \rightarrow \infty} a_{n}=\ell\). \(\square\)

    The following result is proved in a similar way.

    Theorem \(\PageIndex{5}\)

    Let \(\left\{a_{n}\right\}\) be a sequence and \(\ell \in \mathbb{R}\). The following are equivalent:

    1. \(\liminf _{n \rightarrow \infty} a_{n}=\ell\).
    2. For any \(\varepsilon>0\), there exists \(N \in \mathbb{N}\) such that

    \[a_{n}>\ell-\varepsilon \text { for all } n \geq N,\]

    and there exists a subsequence of \(\left\{a_{n_{k}}\right\}\) of \(\left\{a_{n}\right\}\) such that

    \[\lim _{k \rightarrow \infty} a_{n_{k}}=\ell.\]

    Proof

    Add proof here and it will automatically be hidden

    The following corollary follows directly from Theorems 2.5.4 and 2.5.5.

    Corollary \(\PageIndex{6}\)

    Let \(\left\{a_{n}\right\}\) be a sequence. Then

    \[\lim _{n \rightarrow \infty} a_{n}=\ell \text { if and only if } \limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=\ell .\]

    Proof

    Add proof here and it will automatically be hidden

    Corollary \(\PageIndex{7}\)

    Let \(\left\{a_{n}\right\}\) be a sequence.

    1. Suppose \(\limsup _{n \rightarrow \infty} a_{n}=\ell\) and \(\left\{a_{n_{k}}\right\}\) is a subsequence of \(\left\{a_{n}\right\}\) with

    \[\lim _{k \rightarrow \infty} a_{n_{k}}=\ell^{\prime}.\]

    Then \(\ell^{\prime} \leq \ell\).

    1. Suppose \(\liminf _{n \rightarrow \infty} a_{n}=\ell\) and \(\left\{a_{n_{k}}\right\}\) is a subsequence of \(\left\{a_{n}\right\}\) with

    \[\lim _{k \rightarrow \infty} a_{n_{k}}=\ell^{\prime}.\]

    Then \(\ell^{\prime} \geq \ell\).

    Proof

    We prove only (a) because the proof of (b) is similar. By Theorem 2.5.4 and the definition of limits, for any \(\varepsilon>0\), there exists \(N \in \mathbb{N}\) such that

    \[a_{n}<\ell+\varepsilon \text { and } \ell^{\prime}-\varepsilon<a_{n_{k}}<\ell^{\prime}+\varepsilon\]

    for all \(n \geq N\) and \(k \geq N\). Since \(n_{N} \geq N\), this implies

    \[\ell^{\prime}-\varepsilon<a_{n_{N}}<\ell+\varepsilon.\]

    Thus, \(\ell^{\prime}<\ell+2 \varepsilon\) and, hence, \(\ell^{\prime} \leq \ell\) because \(\mathcal{E}\) is arbitrary. \(\square\)

    Remark \(\PageIndex{8}\): Subsequential Limit

    Let \(\left\{a_{n}\right\}\) be a bounded sequence. Define

    \[A=\left\{x \in \mathbb{R}: \text { there exists a subsequence }\left\{a_{n_{k}}\right\} \text { with } \lim a_{n_{k}}=x\right\}.\]

    Each element of the set \(A\) called a subsequential limit of the sequence \(\left\{a_{n}\right\}\). It follows from Theorem 2.5.4, Theorem 2.5.5, and Corollary 2.5.7 that \(A \neq \emptyset\) and

    \[\limsup _{n \rightarrow \infty} a_{n}=\max A \text { and } \liminf _{n \rightarrow \infty} a_{n}=\min A.\]

    Theorem \(\PageIndex{9}\)

    Suppose \(\left\{a_{n}\right\}\) is a sequence such that \(a_{n}>0\) for every \(n \in \mathbb{N}\) and

    \[\limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\ell<1.\]

    Then \(\lim _{n \rightarrow \infty} a_{n}=0\).

    Proof

    Choose \(\varepsilon>0\) such that \(\ell+\varepsilon<1\). Then there exists \(N \in \mathbb{N}\) such that

    \[\frac{a_{n+1}}{a_{n}}<\ell+\varepsilon \text { for all } n \geq N.\]

    Let \(q=\ell+\varepsilon\). Then \(0<q<1\). By induction,

    \[0<a_{n} \leq q^{n-N} a_{N} \text { for all } n \geq N.\]

    Since \(\lim _{n \rightarrow \infty} q^{n-N} a_{N}=0\), one has \(\lim _{n \rightarrow \infty} a_{n}=0\). \(\square\)

    By a similar method, we obtain the theorem below.

    Theorem \(\PageIndex{10}\)

    Suppose \(\left\{a_{n}\right\}\) is a sequence such that \(a_{n}>0\) for every \(n \in \mathbb{N}\) and

    \[\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\ell>1.\]

    Then \(\lim _{n \rightarrow \infty} a_{n}=\infty\).

    Proof

    Add proof here and it will automatically be hidden

    Example \(\PageIndex{1}\)

    Given a real number \(\alpha\), define

    \[a_{n}=\frac{\alpha^{n}}{n !}, n \in \mathbb{N}. \nonumber\]

    Solution

    When \(\alpha =0\), it is obvious that \(\lim _{n \rightarrow \infty} a_{n}=0\). Suppose \(\alpha>0\). Then

    \[\limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\alpha}{n+1}=0<1. \nonumber\]

    Thus, \(\lim _{n \rightarrow \infty} a_{n}=0\). In the general case, we can also show that \(\lim _{n \rightarrow \infty} a_{n}=0\) by considering \(\lim _{n \rightarrow \infty}\left|a_{n}\right|\) and using Exercise 2.1.3.

    All sequences in this set of exercises are assumed to be in \(\mathbb{R}\).

    Exercise \(\PageIndex{1}\)

    Find \(\limsup _{n \rightarrow \infty} a_{n}\) and \(\liminf _{n \rightarrow \infty} a_{n}\) for each sequence.

    1. \(a_{n}=(-1)^{n}\).
    2. \(a_{n}=\sin \left(\frac{n \pi}{2}\right)\).
    3. \(a_{n}=\frac{1+(-1)^{n}}{n}\).
    4. \(a_{n}=n \sin \left(\frac{n \pi}{2}\right)\).

    Exercise \(\PageIndex{2}\)

    For a sequence \(\left\{a_{n}\right\}\), prove that:

    1. \(\liminf _{n \rightarrow \infty} a_{n}=\infty\) if and only if \(\lim _{n \rightarrow \infty} a_{n}=\infty\).
    2. \(\limsup _{n \rightarrow \infty} a_{n}=-\infty\) if and only if \(\lim _{n \rightarrow \infty} a_{n}=-\infty\).

    Exercise \(\PageIndex{3}\)

    Let \(\left\{a_{n}\right\}\) and \(\left\{b_{n}\right\}\) be bounded sequences. Prove that:

    1. \(\sup _{k \geq n}\left(a_{n}+b_{n}\right) \leq \sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}\).
    2. \(\inf _{k \geq n}\left(a_{n}+b_{n}\right) \geq \inf _{k \geq n} a_{k}+\inf _{k \geq n} b_{k}\).

    Exercise \(\PageIndex{4}\)

    Let \(\left\{a_{n}\right\}\) and \(\left\{b_{n}\right\}\) be bounded sequences.

    1. Prove that \(\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}\).
    2. Prove that \(\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \geq \liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n}\).
    3. Find the two counter examples to show that the equalities may not hold in part (a) and part (b).

    Exercise \(\PageIndex{5}\)

    Let \(\left\{a_{n}\right\}\) be a convergent sequence and let \(\left\{b_{n}\right\}\) be an arbitrary sequence. Prove that

    1. \(\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}\).
    2. \(\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n}\).

    This page titled 2.5: Limit Superior and Limit Inferior is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Lafferriere, Lafferriere, and Nguyen (PDXOpen: Open Educational Resources) .