5.3.E: Problems on \(L^{\prime}\) Hôpital's Rule
- Page ID
- 23754
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Elementary differentiation formulas are assumed known.
Complete the proof of L'Hôpital's rule. Verify that the differentiability assumption may be replaced by continuity plus existence of finite or infinite (but not both together infinite) derivatives \(f^{\prime}\) and \(g^{\prime}\) on \(G_{\neg p}\) (same proof).
Show that the rule fails for complex functions. See, however, Problems \(3,\) \(7,\) and \(8 .\)
[Hint: Take \(p=0\) with
\[
f(x)=x \text { and } g(x)=x+x^{2} e^{i / x^{2}}=x+x^{2}\left(\cos \frac{1}{x^{2}}+i \cdot \sin \frac{1}{x^{2}}\right) .
\]
Then
\[
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=1, \text { though } \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{1}{g^{\prime}(x)}=0 .
\]
Indeed, \(g^{\prime}(x)-1=(2 x-2 i / x) e^{i / x^{2}} .\) (Verify!) Hence
\[
\left.\left|g^{\prime}(x)\right|+1 \geq|2 x-2 i / x| \quad \text { (for }\left|e^{i / x^{2}}\right|=1\right) ,
\]
so
\[
\left|g^{\prime}(x)\right| \geq-1+\frac{2}{x} . \quad(\text { Why? })
\]
Deduce that
\[
\left.\left|\frac{1}{g^{\prime}(x)}\right| \leq\left|\frac{x}{2-x}\right| \rightarrow 0 .\right]
\]
Prove the "simplified rule of \(L^{\prime}\) Hôpital" for real or complex functions \(\text { (also for vector-valued } f \text { and scalar-valued } g) :\) If \(f\) and \(g\) are differentiable at \(p,\) with \(g^{\prime}(p) \neq 0\) and \(f(p)=g(p)=0\), then
\[
\lim _{x \rightarrow p} \frac{f(x)}{g(x)}=\frac{f^{\prime}(p)}{g^{\prime}(p)} .
\]
[Hint:
\[
\frac{f(x)}{g(x)}=\frac{f(x)-f(p)}{g(x)-g(p)}=\frac{\Delta f}{\Delta x} / \frac{\Delta g}{\Delta x} \rightarrow \frac{f^{\prime}(p)}{g^{\prime}(p)} .
\]
Why does \(\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}\) not exist, though \(\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}\) does, in the following example? Verify and explain.
\[
f(x)=e^{-2 x}(\cos x+2 \sin x), \quad g(x)=e^{-x}(\cos x+\sin x) .
\]
[Hint: \(g^{\prime}\) vanishes many times in each \(G_{+\infty} .\) Use the Darboux property for the \(\text { proof. }]\)
Find \(\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x}}{x}\).
\(\left.\text { [Hint: Substitute } z=\frac{1}{x} \rightarrow+\infty . \text { Then use the rule. }\right]\)
Verify that the assumptions of L'Hôpital's rule hold, and find the following limits.
(a) \(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\ln (e-x)+x-1}\);
(b) \(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}\);
(c) \(\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}\);
(d) \(\lim _{x \rightarrow 0^{+}}\left(x^{q} \ln x\right), q>0\);
(e) \(\lim _{x \rightarrow+\infty}\left(x^{-q} \ln x\right), q>0\);
(f) \(\lim _{x \rightarrow 0^{+}} x^{x}\);
(g) \(\lim _{x \rightarrow+\infty}\left(x^{q} a^{-x}\right), a>1, q>0\);
(h) \(\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\operatorname{cotan}^{2} x\right)\);
(i) \(\lim _{x \rightarrow+\infty}\left(\frac{\pi}{2}-\arctan x\right)^{1 / \ln x}\);
(j) \(\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 /(1-\cos x)}\).
Prove L'Hôpital's rule for \(f : E^{1} \rightarrow E^{n}(C)\) and \(g : E^{1} \rightarrow E^{1},\) with
\[
\lim _{k \rightarrow p}|f(x)|=0=\lim _{x \rightarrow p}|g(x)|, p \in E^{*} \text { and } r \in E^{n} ,
\]
leaving the other assumptions unchanged.
\(\left.\left.\text { [Hint: Apply the rule to the components of } \frac{f}{g} \text { (respectively, to }\left(\frac{f}{g}\right)_{\mathrm{re}} \text { and }\left(\frac{f}{g}\right)_{\mathrm{im}}\right) .\right]\)
Let \(f\) and \(g\) be complex and differentiable on \(G_{\neg p}, p \in E^{1} .\) Let
\[
\lim _{x \rightarrow p} f(x)=\lim _{x \rightarrow p} g(x)=0, \lim _{x \rightarrow p} f^{\prime}(x)=q, \text { and } \lim _{x \rightarrow p} g^{\prime}(x)=r \neq 0 .
\]
Prove that \(\lim _{x \rightarrow p} \frac{f(x)}{g(x)}=\frac{q}{r}\).
[Hint:
\[
\frac{f(x)}{g(x)}=\frac{f(x)}{x-p} / \frac{g(x)}{x-p} .
\]
Apply Problem 7 to find
\[
\lim _{x \rightarrow p} \frac{f(x)}{x-p} \text { and } \lim _{x \rightarrow p} \frac{g(x)}{x-p} .]
\]
Do Problem 8 for \(f : E^{1} \rightarrow C^{n}\) and \(g : E^{1} \rightarrow C\).