Loading [MathJax]/extensions/TeX/mathchoice.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.7: Derivatives of Inverse Functions

  • Gilbert Strang & Edwin “Jed” Herman
  • OpenStax

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives
  • Calculate the derivative of an inverse function.
  • Recognize the derivatives of the standard inverse trigonometric functions.

In this section we explore the relationship between the derivative of a function and the derivative of its inverse. For functions whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the limit definition of the derivative. In particular, we will apply the formula for derivatives of inverse functions to trigonometric functions. This formula may also be used to extend the power rule to rational exponents.

The Derivative of an Inverse Function

We begin by considering a function and its inverse. If f(x) is both invertible and differentiable, it seems reasonable that the inverse of f(x) is also differentiable. Figure 3.7.1 shows the relationship between a function f(x) and its inverse f1(x). Look at the point (a,f1(a)) on the graph of f1(x) having a tangent line with a slope of

(f1)(a)=pq.

This point corresponds to a point (f1(a),a) on the graph of f(x) having a tangent line with a slope of

f(f1(a))=qp.

Thus, if f1(x) is differentiable at a, then it must be the case that

(f1)(a)=1f(f1(a)).

This graph shows a function f(x) and its inverse f−1(x). These functions are symmetric about the line y = x. The tangent line of the function f(x) at the point (f−1(a), a) and the tangent line of the function f−1(x) at (a, f−1(a)) are also symmetric about the line y = x. Specifically, if the slope of one were p/q, then the slope of the other would be q/p. Lastly, their derivatives are also symmetric about the line y = x.
Figure 3.7.1:The tangent lines of a function and its inverse are related; so, too, are the derivatives of these functions.

We may also derive the formula for the derivative of the inverse by first recalling that x=f(f1(x)). Then by differentiating both sides of this equation (using the chain rule on the right), we obtain

1=f(f1(x))(f1)(x)).

Solving for (f1)(x), we obtain

(f1)(x)=1f(f1(x)).

We summarize this result in the following theorem.

Inverse Function Theorem

Let f(x) be a function that is both invertible and differentiable. Let y=f1(x) be the inverse of f(x). For all x satisfying f(f1(x))0,

dydx=ddx(f1(x))=(f1)(x)=1f(f1(x)).

Alternatively, if y=g(x) is the inverse of f(x), then

g(x)=1f(g(x)).

Example 3.7.1: Applying the Inverse Function Theorem

Use the inverse function theorem to find the derivative of g(x)=x+2x. Compare the resulting derivative to that obtained by differentiating the function directly.

Solution

The inverse of g(x)=x+2x is f(x)=2x1.

We will use Equation ??? and begin by finding f(x). Thus,

f(x)=2(x1)2

and

f(g(x))=2(g(x)1)2=2(x+2x1)2=x22.

Finally,

g(x)=1f(g(x))=2x2.

We can verify that this is the correct derivative by applying the quotient rule to g(x) to obtain

g(x)=2x2.

Exercise 3.7.1

Use the inverse function theorem to find the derivative of g(x)=1x+2. Compare the result obtained by differentiating g(x) directly.

Hint

Use the preceding example as a guide.

Answer

g(x)=1(x+2)2

Example 3.7.2: Applying the Inverse Function Theorem

Use the inverse function theorem to find the derivative of g(x)=3x.

Solution

The function g(x)=3x is the inverse of the function f(x)=x3. Since g(x)=1f(g(x)), begin by finding f(x). Thus,

f(x)=3x2

and

f(g(x))=3(3x)2=3x2/3

Finally,

g(x)=13x2/3.

If we were to differentiate g(x) directly, using the power rule, we would first rewrite g(x)=3x as a power of x to get,

g(x)=x1/3

Then we would differentiate using the power rule to obtain

g(x)=13x2/3=13x2/3.

Exercise 3.7.2

Find the derivative of g(x)=5x by applying the inverse function theorem.

Hint

g(x) is the inverse of f(x)=x5.

Answer

g(x)=15x4/5

From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of the form 1n, where n is a positive integer. This extension will ultimately allow us to differentiate xq, where q is any rational number.

Extending the Power Rule to Rational Exponents

The power rule may be extended to rational exponents. That is, if n is a positive integer, then

ddx(x1/n)=1nx(1/n)1.

Also, if n is a positive integer and m is an arbitrary integer, then

ddx(xm/n)=mnx(m/n)1.

Proof

The function g(x)=x1/n is the inverse of the function f(x)=xn. Since g(x)=1f(g(x)), begin by finding f(x). Thus,

f(x)=nxn1 and f(g(x))=n(x1/n)n1=nx(n1)/n.

Finally,

g(x)=1nx(n1)/n=1nx(1n)/n=1nx(1/n)1.

To differentiate xm/n we must rewrite it as (x1/n)m and apply the chain rule. Thus,

ddx(xm/n)=ddx((x1/n)m)=m(x1/n)m11nx(1/n)1=mnx(m/n)1.

Example 3.7.3: Applying the Power Rule to a Rational Power

Find the equation of the line tangent to the graph of y=x2/3 at x=8.

Solution

First find dydx and evaluate it at x=8. Since

dydx=23x1/3

and

dydx|x=8=13

the slope of the tangent line to the graph at x=8 is 13.

Substituting x=8 into the original function, we obtain y=4. Thus, the tangent line passes through the point (8,4). Substituting into the point-slope formula for a line, we obtain the tangent line

y=13x+43.

Exercise 3.7.3

Find the derivative of s(t)=2t+1.

Hint

Use the chain rule.

Answer

s(t)=(2t+1)1/2

Derivatives of Inverse Trigonometric Functions

We now turn our attention to finding derivatives of inverse trigonometric functions. These derivatives will prove invaluable in the study of integration later in this text. The derivatives of inverse trigonometric functions are quite surprising in that their derivatives are actually algebraic functions. Previously, derivatives of algebraic functions have proven to be algebraic functions and derivatives of trigonometric functions have been shown to be trigonometric functions. Here, for the first time, we see that the derivative of a function need not be of the same type as the original function.

Example 3.7.4A: Derivative of the Inverse Sine Function

Use the inverse function theorem to find the derivative of g(x)=sin1x.

Solution

Since for x in the interval [π2,π2],f(x)=sinx is the inverse of g(x)=sin1x, begin by finding f(x). Since

f(x)=cosx

and

f(g(x))=cos(sin1x)=1x2

we see that

g(x)=ddx(sin1x)=1f(g(x))=11x2

Analysis

To see that cos(sin1x)=1x2, consider the following argument. Set sin1x=θ. In this case, sinθ=x where π2θπ2. We begin by considering the case where 0<θ<π2. Since θ is an acute angle, we may construct a right triangle having acute angle θ, a hypotenuse of length 1 and the side opposite angle θ having length x. From the Pythagorean theorem, the side adjacent to angle θ has length 1x2. This triangle is shown in Figure 3.7.2 Using the triangle, we see that cos(sin1x)=cosθ=1x2.

A right triangle with angle θ, opposite side x, hypotenuse 1, and adjacent side equal to the square root of the quantity (1 – x2).
Figure 3.7.2: Using a right triangle having acute angle θ, a hypotenuse of length 1, and the side opposite angle θ having length x, we can see that cos(sin1x)=cosθ=1x2.

In the case where π2<θ<0, we make the observation that 0<θ<π2 and hence

cos(sin1x)=cosθ=cos(θ)=1x2.

Now if θ=π2 or θ=π2,x=1 or x=1, and since in either case cosθ=0 and 1x2=0, we have

cos(sin1x)=cosθ=1x2.

Consequently, in all cases,

cos(sin1x)=1x2.

Example 3.7.4B: Applying the Chain Rule to the Inverse Sine Function

Apply the chain rule to the formula derived in Example 3.7.4A to find the derivative of h(x)=sin1(g(x)) and use this result to find the derivative of h(x)=sin1(2x3).

Solution

Applying the chain rule to h(x)=sin1(g(x)), we have

h(x)=11(g(x))2g(x).

Now let g(x)=2x3, so g(x)=6x2. Substituting into the previous result, we obtain

h(x)=114x66x2=6x214x6

Exercise 3.7.4

Use the inverse function theorem to find the derivative of g(x)=tan1x.

Hint

The inverse of g(x) is f(x)=tanx. Use Example 3.7.4A as a guide.

Answer

g(x)=11+x2

The derivatives of the remaining inverse trigonometric functions may also be found by using the inverse function theorem. These formulas are provided in the following theorem.

Derivatives of Inverse Trigonometric Functions

ddx(sin1x)=11x2ddx(cos1x)=11x2ddx(tan1x)=11+x2ddx(cot1x)=11+x2ddx(sec1x)=1|x|x21ddx(csc1x)=1|x|x21

Example 3.7.5A: Applying Differentiation Formulas to an Inverse Tangent Function

Find the derivative of f(x)=tan1(x2).

Solution

Let g(x)=x2, so g(x)=2x. Substituting into Equation 3.7.26, we obtain

f(x)=11+(x2)2(2x).

Simplifying, we have

f(x)=2x1+x4.

Example 3.7.5B: Applying Differentiation Formulas to an Inverse Sine Function

Find the derivative of h(x)=x2sin1x.

Solution

By applying the product rule, we have

h(x)=2xsin1x+11x2x2

Exercise 3.7.5

Find the derivative of h(x)=cos1(3x1).

Hint

Use Equation 3.7.25. with g(x)=3x1

Answer

h(x)=36x9x2

Example 3.7.6: Applying the Inverse Tangent Function

The position of a particle at time t is given by s(t)=tan1(1t) for t≥ \ce{1/2}. Find the velocity of the particle at time t=1.

Solution

Begin by differentiating s(t) in order to find v(t).Thus,

v(t)=s′(t)=\dfrac{1}{1+\left(\frac{1}{t}\right)^2}⋅\dfrac{−1}{t^2}.

Simplifying, we have

v(t)=−\dfrac{1}{t^2+1}.

Thus, v(1)=−\dfrac{1}{2}.

Exercise \PageIndex{6}

Find the equation of the line tangent to the graph of f(x)=\sin^{−1}x at x=0.

Hint

f′(0) is the slope of the tangent line.

Answer

y=x

Key Concepts

  • The inverse function theorem allows us to compute derivatives of inverse functions without using the limit definition of the derivative.
  • We can use the inverse function theorem to develop differentiation formulas for the inverse trigonometric functions.

Key Equations

  • Inverse function theorem

(f^{−1})′(x)=\dfrac{1}{f′\big(f^{−1}(x)\big)} whenever f′\big(f^{−1}(x)\big)≠0 and f(x) is differentiable.

  • Power rule with rational exponents

\dfrac{d}{dx}\big(x^{m/n}\big)=\dfrac{m}{n}x^{(m/n)−1}.

  • Derivative of inverse sine function

\dfrac{d}{dx}\big(\sin^{−1}x\big)=\dfrac{1}{\sqrt{1−x^2}}

  • Derivative of inverse cosine function

\dfrac{d}{dx}\big(\cos^{−1}x\big)=\dfrac{−1}{\sqrt{1−x^2}}

Derivative of inverse tangent function

\dfrac{d}{dx}\big(\tan^{−1}x\big)=\dfrac{1}{1+x^2}

Derivative of inverse cotangent function

\dfrac{d}{dx}\big(\cot^{−1}x\big)=\dfrac{−1}{1+x^2}

Derivative of inverse secant function

\dfrac{d}{dx}\big(\sec^{−1}x\big)=\dfrac{1}{|x|\sqrt{x^2−1}}

Derivative of inverse cosecant function

\dfrac{d}{dx}\big(\csc^{−1}x\big)=\dfrac{−1}{|x|\sqrt{x^2−1}}

  • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

  • Paul Seeburger (Monroe Community College) added the second half of Example \PageIndex{2}.

This page titled 3.7: Derivatives of Inverse Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gilbert Strang & Edwin “Jed” Herman (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?