Skip to main content
Mathematics LibreTexts

4.2.E: Best Affine Approximations (Exercises)

  • Page ID
    78230
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Find the best affine approximation for each of the following functions at the specified point \(\mathbf{c}\).

    (a) \(f(x, y)=\left(x^{2}+y^{2}, 3 x y\right), \mathbf{c}=(1,2) \)

    (b) \(g(x, y, z)=(\sin (x+y+z), x y \cos (z)), \mathbf{c}=\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)\)

    (c) \(h(s, t)=\left(3 s^{2}+t, s-t, 4 s t^{2}, 4 t-s\right), \mathbf{c}=(-1,3)\)

    Answer

    (a) \(A(x, y)=\left[\begin{array}{ll}
    2 & 4 \\
    6 & 3
    \end{array}\right]\left[\begin{array}{l}
    x-1 \\
    y-2
    \end{array}\right]+\left[\begin{array}{l}
    5 \\
    6
    \end{array}\right]=\left[\begin{array}{l}
    2 x+4 y-5 \\
    6 x+3 y-6
    \end{array}\right]\)

    (c) \(A(s, t)=\left[\begin{array}{rr}
    -6 & 1 \\
    1 & -1 \\
    36 & -24 \\
    -1 & 4
    \end{array}\right]\left[\begin{array}{l}
    s+1 \\
    t-3
    \end{array}\right]+\left[\begin{array}{c}
    6 \\
    -4 \\
    -36 \\
    13
    \end{array}\right]=\left[\begin{array}{c}
    -6 s+t-3 \\
    s-t \\
    36 s-24 t+72 \\
    -2+4 t
    \end{array}\right]\)

    Exercise \(\PageIndex{2}\)

    Each of the following functions parametrizes a surface \(S\) in \(\mathbb{R}^3\). In each case, find parametric equations for the tangent plane \(P\) passing through the point \(f\left(s_{0}, t_{0}\right)\). Plot \(S\) and \(P\) together.

    (a) \(f(s, t)=(t \cos (s), t \sin (s), t),\left(s_{0}, t_{0}\right)=\left(\frac{\pi}{2}, 2\right)\)

    (b) \(f(s, t)=\left(t^{2} \cos (s), t^{2}, t^{2} \sin (s)\right),\left(s_{0}, t_{0}\right)=(0,1)\)

    (c) \(f(s, t)=(\cos (s) \sin (t), \sin (s) \sin (t), \cos (t)),\left(s_{0}, t_{0}\right)=\left(\frac{\pi}{2}, \frac{\pi}{4}\right)\)

    (d) \(f(s, t)=(3 \cos (s) \sin (t), \sin (s) \sin (t), 2 \cos (t)),\left(s_{0}, t_{0}\right)=\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\)

    (e) \(f(s, t)=((4+2 \cos (t)) \cos (s),(4+2 \cos (t)) \sin (s), 2 \sin (t)),\left(s_{0}, t_{0}\right)=\left(\frac{3 \pi}{4}, \frac{\pi}{4}\right)\)

    Answer

    (a) \(x=-2 s+\pi, y=t, z=t\)

    (c) \(x=-\frac{1}{\sqrt{2}}\left(s-\frac{\pi}{2}\right)\)

    (e) \(\begin{aligned}
    & x=-(2 \sqrt{2}+1)\left(s-\frac{3 \pi}{4}\right)+\left(t-\frac{\pi}{4}\right)-2 \sqrt{2}-1\\
    &y=-(2 \sqrt{2}+1)\left(s-\frac{3 \pi}{4}\right)-\left(t-\frac{\pi}{4}\right)+2 \sqrt{2}+1\\
    &y=\sqrt{2}\left(t-\frac{\pi}{4}\right)+\sqrt{2}
    \end{aligned}\)

    Exercise \(\PageIndex{3}\)

    Let \(S\) be the graph of a function \(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\). Define the function \(F: \mathbb{R}^{2} \rightarrow \mathbb{R}^3 \) by \(F(s, t)=(s, t, f(s, t))\). We may find an equation for the plane tangent to \(S\) at \(\left(s_{0}, t_{0}, f\left(s_{0}, t_{0}\right)\right)\) using either the techniques of Section 3.3 (looking at \(S\) as the graph of \(f\)) or the techniques of this section (looking at \(S\) as a surface parametrized by \(F\)). Verify that these two approaches yield equations for the same plane, both in the special case when \(f(s,t) = s^2 + t^2 \) and \(\left(s_{0}, t_{0}\right)=(1,2)\), and in the general case.

    Exercise \(\PageIndex{4}\)

    Use the chain rule to find the derivative of \(f \circ g\) at the point \(\mathbf{c}\) for each of the following.

    (a) \(f(x, y)=\left(x^{2} y, x-y\right), g(s, t)=\left(3 s t, s^{2}-4 t\right), \mathbf{c}=(1,-2)\)

    (b) \(f(x, y, z)=(4 x y, 3 x z), g(s, t)=\left(s t^{2}-4 t, s^{2}, \frac{4}{s t}\right), \mathbf{c}=(-2,3)\)

    (c) \(f(x, y)=\left(3 x+4 y, 2 x^{2} y, x-y\right), g(s, t, u)=\left(4 s-3 t+u, 5 s t^{2}\right), \mathbf{c}=(1,-2,3)\)

    Answer

    (a) \(D(f \circ g)(1,-2)=\left[\begin{array}{cc}
    720 & -468 \\
    -8 & 15
    \end{array}\right]\)

    (c) \(D(f \circ g)(1,-2,3)=\left[\begin{array}{ccc}
    92 & -89 & 3 \\
    10920 & -9880 & 1040 \\
    -16 & 17 & 1
    \end{array}\right]\)

    Exercise \(\PageIndex{5}\)

    Suppose

    \[ \begin{aligned}
    &x=f(u, v), \\
    &y=g(u, v),
    \end{aligned} \]

    and

    \[ \begin{aligned}
    &u=h(s, t), \\
    &v=k(s, t).
    \end{aligned} \]

    (a) Show that

    \[ \frac{\partial x}{\partial s}=\frac{\partial x}{\partial u} \frac{\partial u}{\partial s}+\frac{\partial x}{\partial v} \frac{\partial v}{\partial s} \nonumber \]

    and

    \[ \frac{\partial x}{\partial t}=\frac{\partial x}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial x}{\partial v} \frac{\partial v}{\partial t} . \nonumber \]

    (b) Find similar expressions for \(\frac{\partial y}{\partial s}\) and \(\frac{\partial y}{\partial t}\).

    Exercise \(\PageIndex{6}\)

    Use your results in Exercise 5 to find \(\frac{\partial x}{\partial s}, \frac{\partial x}{\partial t}, \frac{\partial y}{\partial s}\), and \(\frac{\partial y}{\partial t}\) when

    \[ \begin{aligned}
    &x=u^{2} v , \\
    &y=3 u-v,
    \end{aligned} \]

    and

    \[ \begin{aligned}
    &u=4 t^{2}-s^{2} , \\
    &v=\frac{4 t}{s} .
    \end{aligned} \]

    Answer

    \(\begin{aligned}
    & \frac{\partial x}{\partial s}=(2 u v)(-2 s)+\left(u^{2}\right)\left(-\frac{4 t}{s^{2}}\right)\\
    &\frac{\partial x}{\partial t}=(2 u v)(8 t)+\left(u^{2}\right)\left(\frac{4}{s}\right)\\
    &\frac{\partial y}{\partial s}=(3)(-2 s)+(-1)\left(-\frac{4 t}{s^{2}}\right)\\
    &\frac{\partial y}{\partial t}=(3)(8 t)+(-1)\left(\frac{4}{s}\right)
    \end{aligned}\)

    Exercise \(\PageIndex{7}\)

    Suppose \(T\) is a function of \(x\) and \(y\) where

    \[ \begin{aligned}
    &x=r \cos (\theta) , \\
    &y=r \sin (\theta) .
    \end{aligned} \]

    Show that

    \[ \frac{\partial T}{\partial r}=\frac{\partial T}{\partial x} \cos (\theta)+\frac{\partial T}{\partial y} \sin (\theta) \nonumber \]

    and

    \[ \frac{\partial T}{\partial \theta}=-\frac{\partial T}{\partial x} r \sin (\theta)+\frac{\partial T}{\partial y} r \cos (\theta) . \nonumber \]

    Exercise \(\PageIndex{8}\)

    Suppose the temperature at a point \((x,y)\) in the plane is given by

    \[ T=100-\frac{20}{\sqrt{1+x^{2}+y^{2}}} . \nonumber \]

    (a) If \((r , \theta )\) represents the polar coordinates of \((x,y)\), use Exercise 7 to find \(\frac{\partial T}{\partial r}\) and \(\frac{\partial T}{\partial \theta}\) when \(r=4\) and \(\theta = \frac{\pi}{6}\).

    (b) Show that \(\frac{\partial T}{\partial \theta}=0\) for all values of \(r\) and \(\theta\). Can you explain this result geometrically?

    Answer

    (a) \(\left.\frac{\partial T}{\partial r}\right|_{r=4, \theta=\frac{\pi}{6}}=\frac{80}{17 \sqrt{17}},\left.\frac{\partial T}{\partial \theta}\right|_{r=4, \theta=\frac{\pi}{6}}=0\)

    (b) The level curves of \(T\) are circles.

    Exercise \(\PageIndex{9}\)

    Let \(T\) be the torus parametrized by

    \[ \begin{aligned}
    &x=(4+2 \cos (t)) \cos (s) , \\
    &y=(4+2 \cos (t)) \sin (s) , \\
    &z=2 \sin (t) ,
    \end{aligned} \]

    for \(0 \leq s \leq 2 \pi\) and \(0 \leq t \leq 2 \pi\).

    (a) If \(U\) is a function of \(x\), \(y\), and \(z\), find general expressions for \(\frac{\partial U}{\partial s}\) and \(\frac{\partial U}{\partial t}\).

    (b) Suppose

    \[ U=80-40 e^{-\frac{1}{20}\left(x^{2}+y^{2}+z^{2}\right)} \nonumber \]

    gives the temperature at a point \((x,y,z)\) on \(T\). Find expressions for \(\frac{\partial U}{\partial s}\) and \(\frac{\partial U}{\partial t}\) in this case. What is the geometrical interpretation of these quantities?

    (c) Evaluate \(\frac{\partial U}{\partial s}\) and \(\frac{\partial U}{\partial t}\) in the particular case \(s=\frac{\pi}{4}\) and \(t=\frac{\pi}{4}\).


    This page titled 4.2.E: Best Affine Approximations (Exercises) is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.