Skip to main content
Mathematics LibreTexts

About the Authors

  • Page ID
    98582
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    About William T. Trotter

    William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He was first exposed to combinatorial mathematics through the 1971 Bowdoin Combinatorics Conference which featured an array of superstars of that era, including Gian Carlo Rota, Paul Erdős, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Graham, Daniel Kleitman and Ray Fulkerson. Since that time, he has published more than 120 research papers on graph theory, discrete geometry, Ramsey theory, and extremal combinatorics. Perhaps his best known work is in the area of combinatorics and partially ordered sets, and his 1992 research monograph on this topic has been very influential. (He takes some pride in the fact that this monograph is still in print and copies are being sold in 2016.) He has more than 70 co-authors, but considers his extensive joint work with Graham Brightwell, Stefan Felsner, Peter Fishburn, Hal Kierstead and Endre Szemerèdi as representing his best work. His career includes invited presentations at more than 50 international conferences and more than 30 meetings of professional societies. He was the founding editor of the SIAM Journal on Discrete Mathematics and has served on the Editorial Board of Order since the journal was launched in 1984, and his service includes an eight year stint as Editor-in-Chief. Currently, he serves on the editorial boards of three other journals in combinatorial mathematics.

    Still he has his quirks. First, he insists on being called “Tom”, as Thomas is his middle name, while continuing to sign as William T. Trotter. Second, he has invested time and energy serving five terms as department/school chair, one at Georgia Tech, two at Arizona State University and two at the University of South Carolina. In addition, he has served as a Vice Provost and as an Assistant Dean. Third, he is fascinated by computer operating systems and is always installing new ones. In one particular week, he put eleven different flavors of Linux on the same machine, interspersed with four complete installs of Windows 7. Incidentally, the entire process started and ended with Windows 7. Fourth, he likes to hit golf balls, not play golf, just hit balls. Without these diversions, he might even have had enough time to settle the Riemann hypothesis.

    He has had eleven Ph.D. students, one of which is now his co-author on this text.

    About Mitchel T. Keller

    Mitchel T. Keller is a super-achiever (this description is written by WTT) extraordinaire from North Dakota. As a graduate student at Georgia Tech, he won a lengthy list of honors and awards, including a VIGRE Graduate Fellowship, an IMPACT Scholarship, a John R. Festa Fellowship and the 2009 Price Research Award. Mitch is a natural leader and was elected President (and Vice President) of the Georgia Tech Graduate Student Government Association, roles in which he served with distinction. Indeed, after completing his terms, his student colleagues voted to establish a continuing award for distinguished leadership, to be named the Mitchel T. Keller award, with Mitch as the first recipient. Very few graduate students win awards in the first place, but Mitch is the only one I know who has an award named after them.

    Mitch is also a gifted teacher of mathematics, receiving the prestigious Georgia Tech 2008 Outstanding Teacher Award, a campus-wide competition. He is quick to experiment with the latest approaches to teaching mathematics, adopting what works for him while refining and polishing things along the way. He really understands the literature behind active learning and the principles of engaging students in the learning process. Mitch has even taught his more senior (some say ancient) co-author a thing or two and got him to try personal response systems in a large calculus section.

    Mitch is off to a fast start in his own research career, and is already an expert in the subject of linear discrepancy. Mitch has also made substantive contributions to a topic known as Stanley depth, which is right at the boundary of combinatorial mathematics and algebraic combinatorics.

    After finishing his Ph.D., Mitch received another signal honor, a Marshall Sherfield Postdoctoral Fellowship and spent two years at the London School of Economics. He is presently an Assistant Professor of Mathematics at Morningside College, and a few years down the road, he'll probably be president of something.

    On the personal side, Mitch is the keeper of the Mathematics Genealogy Project, and he is a great cook. His desserts are to die for.

    • Was this article helpful?