# Book: Combinatorics and Graph Theory (Guichard)

- Page ID
- 7136

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

Combinatorics is often described briefly as being about counting, and indeed counting is a large part of combinatorics. As the name suggests, however, it is broader than this: it is about combining things. Questions that arise include counting problems: "How many ways can these elements be combined?'' But there are other questions, such as whether a certain combination is possible, or what combination is the "best'' in some sense. We will see all of these, though counting plays a particularly large role. Graph theory is concerned with various types of networks, or really models of networks called graphs. These are not the graphs of analytic geometry, but what are often described as "points connected by lines''.

**This textmap is stilll under construction. Please forgive us.**

*Thumbnail: Rubik's Cube. Image used with permission (CC BY-SA 3.0 Unported; Booyabazooka).*