10.2: Linear Systems of Differential Equations
- Page ID
- 9454
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
A first order system of differential equations that can be written in the form
\[\label{eq:10.2.1} \begin{array}{ccl} y'_1&=&a_{11}(t)y_1+a_{12}(t)y_2+\cdots+a_{1n}(t)y_n+f_1(t)\\[4pt] y'_2&=&a_{21}(t)y_1+a_{22}(t)y_2+\cdots+a_{2n}(t)y_n+f_2(t)\\[4pt] &\vdots\\[4pt] y'_n& =&a_{n1}(t)y_1+a_{n2}(t)y_2+\cdots+a_{nn}(t)y_n+f_n(t)\end{array} \]
is called a linear system.
The linear system Equation \ref{eq:10.2.1} can be written in matrix form as
\[\col{y'}n=\matfunc ann\col yn+\colfunc fn, \nonumber \]
or more briefly as
\[\label{eq:10.2.2} {\bf y}'=A(t){\bf y}+{\bf f}(t), \]
where
\[\bf y=\col yn,\quad A(t)=\matfunc ann,\quad \text{and} \quad{\bf f}(t)=\colfunc fn. \nonumber \]
We call \(A\) the coefficient matrix of Equation \ref{eq:10.2.2} and \({\bf f}\) the forcing function. We’ll say that \(A\) and \({\bf f}\) are continuous if their entries are continuous. If \(\bf f={\bf 0}\), then Equation \ref{eq:10.2.2} is homogeneous; otherwise, Equation \ref{eq:10.2.2} is nonhomogeneous.
An initial value problem for Equation \ref{eq:10.2.2} consists of finding a solution of Equation \ref{eq:10.2.2} that equals a given constant vector
\[\bf k =\col kn. \nonumber \]
at some initial point \(t_0\). We write this initial value problem as
\[\bf y'=A(t){\bf y}+{\bf f}(t), \quad {\bf y}(t_0)={\bf k}.\nonumber \]
The next theorem gives sufficient conditions for the existence of solutions of initial value problems for Equation \ref{eq:10.2.2}. We omit the proof.
Suppose the coefficient matrix \(A\) and the forcing function \({\bf f}\) are continuous on \((a,b)\), let \(t_0\) be in \((a,b)\), and let \({\bf k}\) be an arbitrary constant \(n\)-vector. Then the initial value problem
\[\bf y'=A(t){\bf y}+{\bf f}(t), \quad {\bf y}(t_0)= \bf k \nonumber \]
has a unique solution on \((a,b)\).
- Write the system \[\label{eq:10.2.3} \begin{array}{rcl} y_1'&=&\phantom{2}y_1+2y_2+2e^{4t} \\[4pt] y_2'&=&2y_1+\phantom{2}y_2+\phantom{2}e^{4t} \end{array} \] in matrix form and conclude from Theorem 10.2.1 that every initial value problem for Equation \ref{eq:10.2.3} has a unique solution on \((-\infty,\infty)\).
- Verify that \[\label{eq:10.2.4} {\bf y}= {1\over5}\twocol87e^{4t}+c_1\twocol11e^{3t}+c_2\twocol1{-1}e^{-t} \] is a solution of Equation \ref{eq:10.2.3} for all values of the constants \(c_1\) and \(c_2\).
- Find the solution of the initial value problem \[\label{eq:10.2.5} {\bf y}'=\left[\begin{array}{cc}{1}&{2}\\[4pt]{2}&{1}\end{array} \right] {\bf y}+\twocol21e^{4t},\quad {\bf y}(0)={1\over5}\twocol3{22}. \]
Solution a
The system Equation \ref{eq:10.2.3} can be written in matrix form as
\[{\bf y}'=\twobytwo1221{\bf y}+\twocol21e^{4t}.\nonumber \]
An initial value problem for Equation \ref{eq:10.2.3} can be written as
\[{\bf y}'=\left[\begin{array}{cc}{1}&{2}\\[4pt]{2}&{1}\end{array} \right] {\bf y}+\twocol21e^{4t}, \quad y(t_0)=\twocol{k_1}{k_2}. \nonumber \]
Since the coefficient matrix and the forcing function are both continuous on \((-\infty,\infty)\), Theorem 10.2.1 implies that this problem has a unique solution on \((-\infty,\infty)\).
Solution b
If \({\bf y}\) is given by Equation \ref{eq:10.2.4}, then
\[\begin{align*} A{\bf y}+{\bf f}&= {1\over5}\left[\begin{array}{cc}{1}&{2}\\[4pt]{2}&{1}\end{array} \right]\twocol87e^{4t}+ c_1\left[\begin{array}{cc}{1}&{2}\\[4pt]{2}&{1}\end{array} \right]\twocol11e^{3t} +c_2\left[\begin{array}{cc}{1}&{2}\\[4pt]{2}&{1}\end{array} \right]\twocol1{-1}e^{-t} +\twocol21e^{4t}\\[4pt] &= {1\over5}\twocol{22}{23}e^{4t}+c_1\twocol33e^{3t}+c_2\twocol{-1}1e^{-t} +\twocol21e^{4t}\\[4pt] &= {1\over5}\twocol{32}{28}e^{4t}+3c_1\twocol11e^{3t}-c_2\twocol1{-1}e^{-t} \\[4pt] &={\bf y}'.\end{align*} \]
Solution c
We must choose \(c_1\) and \(c_2\) in Equation \ref{eq:10.2.4} so that
\[{1\over5}\twocol87+c_1\twocol11+c_2\twocol1{-1}={1\over5}\twocol3{22},\nonumber \]
which is equivalent to
\[ \left[\begin{array}{cc}{1}&{1}\\[4pt]{1}&{-1}\end{array} \right] \twocol{c_1}{c_2}=\twocol{-1}3.\nonumber \]
Solving this system yields \(c_1=1\), \(c_2=-2\), so
\[{\bf y}={1\over5}\twocol87e^{4t}+\twocol11e^{3t}-2\twocol1{-1}e^{-t}\nonumber \]
is the solution of Equation \ref{eq:10.2.5}.
The theory of \(n \times n\) linear systems of differential equations is analogous to the theory of the scalar n-th order equation \[\label{eq:10.2.6} P_{0}(t)y^{(n)}+P_{1}(t)y^{(n-1)}+\cdots +P_{n}(t)y=F(t) \] as developed in Sections 9.1. For example by rewriting Equation \ref{eq:10.2.6} as an equivalent linear system it can be shown that Theorem 10.2.1 implies Theorem 9.1.1.


