Skip to main content
Mathematics LibreTexts

10.2: Linear Systems of Differential Equations

  • Page ID
    9454
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\place}{\bigskip\hrule\bigskip\noindent} \newcommand{\threecol}[3]{\left[\begin{array}{r}#1\\#2\\#3\end{array}\right]} \newcommand{\threecolj}[3]{\left[\begin{array}{r}#1\\[1\jot]#2\\[1\jot]#3\end{array}\right]} \newcommand{\lims}[2]{\,\bigg|_{#1}^{#2}} \newcommand{\twocol}[2]{\left[\begin{array}{l}#1\\#2\end{array}\right]} \newcommand{\ctwocol}[2]{\left[\begin{array}{c}#1\\#2\end{array}\right]} \newcommand{\cthreecol}[3]{\left[\begin{array}{c}#1\\#2\\#3\end{array}\right]} \newcommand{\eqline}[1]{\centerline{\hfill$\displaystyle#1$\hfill}} \newcommand{\twochar}[4]{\left|\begin{array}{cc} #1-\lambda\\#3-\lambda\end{array}\right|} \newcommand{\twobytwo}[4]{\left[\begin{array}{rr} #1\\#3\end{array}\right]} \newcommand{\threechar}[9]{\left[\begin{array}{ccc} #1-\lambda\\#4-\lambda\\#7 -\lambda\end{array}\right]} \newcommand{\threebythree}[9]{\left[\begin{array}{rrr} #1\\#4\\#7 \end{array}\right]} \newcommand{\solutionpart}[1]{\vskip10pt\noindent\underbar{\color{blue}\sc Solution({\bf #1})\ }} \newcommand{\Cex}{\fbox{\textcolor{red}{C}}\, } \newcommand{\CGex}{\fbox{\textcolor{red}{C/G}}\, } \newcommand{\Lex}{\fbox{\textcolor{red}{L}}\, } \newcommand{\matfunc}[3]{\left[\begin{array}{cccc}#1_{11}(t)_{12}(t)&\cdots _{1#3}(t)\\#1_{21}(t)_{22}(t)&\cdots_{2#3}(t)\\\vdots& \vdots&\ddots&\vdots\\#1_{#21}(t)_{#22}(t)&\cdots_{#2#3}(t) \end{array}\right]} \newcommand{\col}[2]{\left[\begin{array}{c}#1_1\\#1_2\\\vdots\\#1_#2\end{array}\right]} \newcommand{\colfunc}[2]{\left[\begin{array}{c}#1_1(t)\\#1_2(t)\\\vdots\\#1_#2(t)\end{array}\right]} \newcommand{\cthreebythree}[9]{\left[\begin{array}{ccc} #1\\#4\\#7 \end{array}\right]} 1 \ newcommand {\ dy} {\ ,\ mathrm {d}y} \ newcommand {\ dx} {\ ,\ mathrm {d}x} \ newcommand {\ dyx} {\ ,\ frac {\ mathrm {d}y}{\ mathrm {d}x}} \ newcommand {\ ds} {\ ,\ mathrm {d}s} \ newcommand {\ dt }{\ ,\ mathrm {d}t} \ newcommand {\dst} {\ ,\ frac {\ mathrm {d}s}{\ mathrm {d}t}} \)

    A first order system of differential equations that can be written in the form

    \[\label{eq:10.2.1} \begin{array}{ccl} y'_1&=&a_{11}(t)y_1+a_{12}(t)y_2+\cdots+a_{1n}(t)y_n+f_1(t)\\ y'_2&=&a_{21}(t)y_1+a_{22}(t)y_2+\cdots+a_{2n}(t)y_n+f_2(t)\\ &\vdots\\ y'_n& =&a_{n1}(t)y_1+a_{n2}(t)y_2+\cdots+a_{nn}(t)y_n+f_n(t)\end{array}\]

    is called a linear system.

    The linear system Equation \ref{eq:10.2.1} can be written in matrix form as

    \[\col{y'}n=\matfunc ann\col yn+\colfunc fn, \nonumber\]

    or more briefly as

    \[\label{eq:10.2.2} {\bf y}'=A(t){\bf y}+{\bf f}(t),\]

    where

    \[\bf y=\col yn,\quad A(t)=\matfunc ann,\quad \text{and} \quad{\bf f}(t)=\colfunc fn. \nonumber \]

    We call \(A\) the coefficient matrix of Equation \ref{eq:10.2.2} and \({\bf f}\) the forcing function. We’ll say that \(A\) and \({\bf f}\) are continuous if their entries are continuous. If \(\bf f={\bf 0}\), then Equation \ref{eq:10.2.2} is homogeneous; otherwise, Equation \ref{eq:10.2.2} is nonhomogeneous.

    An initial value problem for Equation \ref{eq:10.2.2} consists of finding a solution of Equation \ref{eq:10.2.2} that equals a given constant vector

    \[\bf k =\col kn. \nonumber\]

    at some initial point \(t_0\). We write this initial value problem as

    \[\bf y'=A(t){\bf y}+{\bf f}(t), \quad {\bf y}(t_0)={\bf k}.\nonumber\]

    The next theorem gives sufficient conditions for the existence of solutions of initial value problems for Equation \ref{eq:10.2.2}. We omit the proof.

    Theorem 10.2.1 : Existence

    Suppose the coefficient matrix \(A\) and the forcing function \({\bf f}\) are continuous on \((a,b)\), let \(t_0\) be in \((a,b)\), and let \({\bf k}\) be an arbitrary constant \(n\)-vector. Then the initial value problem

    \[\bf y'=A(t){\bf y}+{\bf f}(t), \quad {\bf y}(t_0)= \bf k \nonumber\]

    has a unique solution on \((a,b)\).

    Example 10.2.1

    1. Write the system \[\label{eq:10.2.3} \begin{array}{rcl} y_1'&=&\phantom{2}y_1+2y_2+2e^{4t} \\[4pt] y_2'&=&2y_1+\phantom{2}y_2+\phantom{2}e^{4t} \end{array}\] in matrix form and conclude from Theorem 10.2.1 that every initial value problem for Equation \ref{eq:10.2.3} has a unique solution on \((-\infty,\infty)\).
    2. Verify that \[\label{eq:10.2.4} {\bf y}= {1\over5}\twocol87e^{4t}+c_1\twocol11e^{3t}+c_2\twocol1{-1}e^{-t}\] is a solution of Equation \ref{eq:10.2.3} for all values of the constants \(c_1\) and \(c_2\).
    3. Find the solution of the initial value problem \[\label{eq:10.2.5} {\bf y}'=\left[\begin{array}{cc}{1}&{2}\\{2}&{1}\end{array} \right] {\bf y}+\twocol21e^{4t},\quad {\bf y}(0)={1\over5}\twocol3{22}.\]

    Solution a

    The system Equation \ref{eq:10.2.3} can be written in matrix form as

    \[{\bf y}'=\twobytwo1221{\bf y}+\twocol21e^{4t}.\nonumber\]

    An initial value problem for Equation \ref{eq:10.2.3} can be written as

    \[{\bf y}'=\left[\begin{array}{cc}{1}&{2}\\{2}&{1}\end{array} \right] {\bf y}+\twocol21e^{4t}, \quad y(t_0)=\twocol{k_1}{k_2}. \nonumber\]

    Since the coefficient matrix and the forcing function are both continuous on \((-\infty,\infty)\), Theorem 10.2.1 implies that this problem has a unique solution on \((-\infty,\infty)\).

    Solution b

    If \({\bf y}\) is given by Equation \ref{eq:10.2.4}, then

    \[\begin{align*} A{\bf y}+{\bf f}&= {1\over5}\left[\begin{array}{cc}{1}&{2}\\{2}&{1}\end{array} \right]\twocol87e^{4t}+ c_1\left[\begin{array}{cc}{1}&{2}\\{2}&{1}\end{array} \right]\twocol11e^{3t} +c_2\left[\begin{array}{cc}{1}&{2}\\{2}&{1}\end{array} \right]\twocol1{-1}e^{-t} +\twocol21e^{4t}\\[4pt] &= {1\over5}\twocol{22}{23}e^{4t}+c_1\twocol33e^{3t}+c_2\twocol{-1}1e^{-t} +\twocol21e^{4t}\\[4pt] &= {1\over5}\twocol{32}{28}e^{4t}+3c_1\twocol11e^{3t}-c_2\twocol1{-1}e^{-t} \\[4pt] &={\bf y}'.\end{align*}\]

    Solution c

    We must choose \(c_1\) and \(c_2\) in Equation \ref{eq:10.2.4} so that

    \[{1\over5}\twocol87+c_1\twocol11+c_2\twocol1{-1}={1\over5}\twocol3{22},\nonumber\]

    which is equivalent to

    \[ \left[\begin{array}{cc}{1}&{1}\\{1}&{-1}\end{array} \right] \twocol{c_1}{c_2}=\twocol{-1}3.\nonumber\]

    Solving this system yields \(c_1=1\), \(c_2=-2\), so

    \[{\bf y}={1\over5}\twocol87e^{4t}+\twocol11e^{3t}-2\twocol1{-1}e^{-t}\nonumber\]

    is the solution of Equation \ref{eq:10.2.5}.

    Note

    The theory of \(n \times n\) linear systems of differential equations is analogous to the theory of the scalar n-th order equation \[\label{eq:10.2.6} P_{0}(t)y^{(n)}+P_{1}(t)y^{(n-1)}+\cdots +P_{n}(t)y=F(t)\] as developed in Sections 9.1. For example by rewriting Equation \ref{eq:10.2.6} as an equivalent linear system it can be shown that Theorem 10.2.1 implies Theorem 9.1.1 (Exercise 10.2.12).


    This page titled 10.2: Linear Systems of Differential Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.