7.6E: The Method of Frobenius I (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
This set contains exercises specifically identified by that ask you to implement the verification procedure. These particular exercises were chosen arbitrarily you can just as well formulate such laboratory problems for any of the equations in Exercises 7.5.1-7.5.10, 7.5.14-7.5.25, and 7.5.28-7.5.51.
Q7.5.1
In Exercises 7.5.1-7.5.10 find a fundamental set of Frobenius solutions. Compute a0,a1,...,aN for N at least 7 in each solution.
1. 2x2(1+x+x2)y″+x(3+3x+5x2)y′−y=0
2. 3x2y″+2x(1+x−2x2)y′+(2x−8x2)y=0
3. x2(3+3x+x2)y″+x(5+8x+7x2)y′−(1−2x−9x2)y=0
4. 4x2y″+x(7+2x+4x2)y′−(1−4x−7x2)y=0
5. 12x2(1+x)y″+x(11+35x+3x2)y′−(1−10x−5x2)y=0
6. x2(5+x+10x2)y″+x(4+3x+48x2)y′+(x+36x2)y=0
7. 8x2y″−2x(3−4x−x2)y′+(3+6x+x2)y=0
8. 18x2(1+x)y″+3x(5+11x+x2)y′−(1−2x−5x2)y=0
9. x(3+x+x2)y″+(4+x−x2)y′+xy=0
10. 10x2(1+x+2x2)y″+x(13+13x+66x2)y′−(1+4x+10x2)y=0
Q7.5.2
11. The Frobenius solutions of
2x2(1+x+x2)y″+x(9+11x+11x2)y′+(6+10x+7x2)y=0
obtained in Example 7.5.1 are defined on (0,ρ), where ρ is defined in Theorem 7.5.2. Find ρ. Then do the following experiments for each Frobenius solution, with M=20 and δ=.5ρ, .7ρ, and .9ρ in the verification procedure described at the end of this section.
- Compute σN(δ) (see Equation 7.5.28) for N=5, 10, 15,…, 50.
- Find N such that σN(δ)<10−5.
- Find N such that σN(δ)<10−10.
12. By Theorem 7.5.2 the Frobenius solutions of the equation in Exercise 7.5.4 are defined on (0,∞). Do experiments (a), (b), and (c) of Exercise 7.5.11 for each Frobenius solution, with M=20 and δ=1, 2, and 3 in the verification procedure described at the end of this section.
13. The Frobenius solutions of the equation in Exercise 7.5.6 are defined on (0,ρ), where ρ is defined in Theorem 7.5.2. Find ρ and do experiments (a), (b), and (c) of Exericse 7.5.11 for each Frobenius solution, with M=20 and δ=.3ρ, .4ρ, and .5ρ, in the verification procedure described at the end of this section.
Q7.5.3
In Exercises 7.5.14-7.5.25 find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients in each solution.
14. 2x2y″+x(3+2x)y′−(1−x)y=0
15. x2(3+x)y″+x(5+4x)y′−(1−2x)y=0
16. 2x2y″+x(5+x)y′−(2−3x)y=0
17. 3x2y″+x(1+x)y′−y=0
18. 2x2y″−xy′+(1−2x)y=0
19. 9x2y″+9xy′−(1+3x)y=0
20. 3x2y″+x(1+x)y′−(1+3x)y=0
21. 2x2(3+x)y″+x(1+5x)y′+(1+x)y=0
22. x2(4+x)y″−x(1−3x)y′+y=0
23. 2x2y″+5xy′+(1+x)y=0
24. x2(3+4x)y″+x(5+18x)y′−(1−12x)y=0
25. 6x2y″+x(10−x)y′−(2+x)y=0
Q7.5.4
26. By Theorem 7.5.2 the Frobenius solutions of the equation in Exercise 7.5.17 are defined on (0,∞). Do experiments (a), (b), and (c) of Exercise 7.5.11 for each Frobenius solution, with M=20 and δ=3, 6, 9, and 12 in the verification procedure described at the end of this section.
27. The Frobenius solutions of the equation in Exercise 7.5.22 are defined on (0,ρ), where ρ is defined in Theorem 7.5.2. Find ρ and do experiments (a), (b), and (c) of Exercise 7.5.11 for each Frobenius solution, with M=20 and δ=.25ρ, .5ρ, and .75ρ in the verification procedure described at the end of this section.
Q7.5.5
In Exercises 7.5.28- 7.5.32 find a fundamental set of Frobenius solutions. Compare coefficients a0,...,aN for N at least 7 in each solution.
28. x2(8+x)y″+x(2+3x)y′+(1+x)y=0
29. x2(3+4x)y″+x(11+4x)y′−(3+4x)y=0
30. 2x2(2+3x)y″+x(4+11x)y′−(1−x)y=0
31. x2(2+x)y″+5x(1−x)y′−(2−8x)y
32. x2(6+x)y″+x(11+4x)y′+(1+2x)y=0
Q7.5.6
In Exercises 7.5.33-7.5.36 find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients in each solution.
33. 8x2y″+x(2+x2)y′+y=0
34. 8x2(1−x2)y″+2x(1−13x2)y′+(1−9x2)y=0
35. x2(1+x2)y″−2x(2−x2)y′+4y=0
36. x(3+x2)y″+(2−x2)y′−8xy=0
37. 4x2(1−x2)y″+x(7−19x2)y′−(1+14x2)y=0
38. 3x2(2−x2)y″+x(1−11x2)y′+(1−5x2)y=0
39. 2x2(2+x2)y″−x(12−7x2)y′+(7+3x2)y=0
40. 2x2(2+x2)y″+x(4+7x2)y′−(1−3x2)y=0
41. 2x2(1+2x2)y″+5x(1+6x2)y′−(2−40x2)y=0
42. 3x2(1+x2)y″+5x(1+x2)y′−(1+5x2)y=0
43. x(1+x2)y″+(4+7x2)y′+8xy=0
44. x2(2+x2)y″+x(3+x2)y′−y=0
45. 2x2(1+x2)y″+x(3+8x2)y′−(3−4x2)y=0
46. 9x2y″+3x(3+x2)y′−(1−5x2)y=0
Q7.5.7
In Exercises 7.5.47-7.5.51 find a fundamental set of Frobenius solutions. Compare the coefficients a0,...,a2M for M at least 7 in each solution.
47. 6x2y″+x(1+6x2)y′+(1+9x2)y=0
48. x2(8+x2)y″+7x(2+x2)y′−(2−9x2)y=0
49. 9x2(1+x2)y″+3x(3+13x2)y′−(1−25x2)y=0
50. 4x2(1+x2)y″+4x(1+6x2)y′−(1−25x2)y=0
51. 8x2(1+2x2)y″+2x(5+34x2)y′−(1−30x2)y=0
Q7.5.8
52. Suppose r1>r2, a0=b0=1, and the Frobenius series
y1=xr1∞∑n=0anxn and y2=xr2∞∑n=0bnxn
both converge on an interval (0,ρ).- Show that y1 and y2 are linearly independent on (0,ρ). HINT: Show that if c1 and c2 are constants such that c1y1+c2y2≡0 on (0,ρ), then c1xr1−r2∞∑n=0anxn+c2∞∑n=0bnxn=0,0<x<ρ
- Use the result of (b) to complete the proof of Theorem 7.5.3.
53. The equation
x2y″+xy′+(x2−ν2)y=0
is Bessel’s equation of order ν. (Here ν is a parameter, and this use of “order” should not be confused with its usual use as in “the order of the equation.”) The solutions of Equation A are Bessel functions of order ν.- Assuming that ν isn’t an integer, find a fundamental set of Frobenius solutions of Equation A.
- If ν=1/2, the solutions of Equation A reduce to familiar elementary functions. Identify these functions.
54.
- Verify that ddx(|x|rxn)=(n+r)|x|rxn−1andd2dx2(|x|rxn)=(n+r)(n+r−1)|x|rxn−2 if x≠0.
- Let Ly=x2(α0+α1x+α2x2)y″+x(β0+β1x+β2x2)y′+(γ0+γ1x+γ2x2)y=0. Show that if xr∑∞n=0anxn is a solution of Ly=0 on (0,ρ) then |x|r∑∞n=0anxn is a solution on (−ρ,0) and (0,ρ).
55.
- Deduce from Equation 7.5.20 that an(r)=(−1)nn∏j=1p1(j+r−1)p0(j+r).
- Conclude that if p_0(r)=\alpha_0(r-r_1)(r-r_2) where r_1-r_2 is not an integer, then y_1=x^{r_1}\sum_{n=0}^\infty a_n(r_1)x^n\quad\mbox{ and }\quad y_2=x^{r_2}\sum_{n=0}^\infty a_n(r_2)x^n\nonumber form a fundamental set of Frobenius solutions of x^2(\alpha_0+\alpha_1x)y''+x(\beta_0+\beta_1x)y'+(\gamma_0+\gamma_1x)y=0.\nonumber
- Show that if p_0 satisfies the hypotheses of (b) then y_1=x^{r_1}\sum_{n=0}^\infty {(-1)^n\over n!\prod_{j=1}^n(j+r_1-r_2)} \left(\gamma_1\over\alpha_0\right)^nx^n\nonumber and y_2=x^{r_2}\sum_{n=0}^\infty {(-1)^n\over n!\prod_{j=1}^n(j+r_2-r_1)} \left(\gamma_1\over\alpha_0\right)^nx^n\nonumber form a fundamental set of Frobenius solutions of \alpha_0x^2y''+\beta_0xy'+(\gamma_0+\gamma_1x)y=0.\nonumber
56. Let
Ly=x^2(\alpha_0+\alpha_2x^2)y''+x(\beta_0+\beta_2x^2)y'+ (\gamma_0+\gamma_2x^2)y=0\nonumber
and definep_0(r)=\alpha_0r(r-1)+\beta_0r+\gamma_0\quad\mbox{ and }\quad p_2(r)=\alpha_2r(r-1)+\beta_2r+\gamma_2.\nonumber
- Use Theorem 7.5.2 to show that if \begin{array}{rcl} a_0(r)&=&1,\\[4pt] p_0(2m+r)a_{2m}(r)+p_2(2m+r-2)a_{2m-2}(r)&=&0,\quad m\ge1, \end{array}\tag{A} then the Frobenius series y(x,r)=x^r\sum_{m=0}^\infty a_{2m}x^{2m} satisfies Ly(x,r)=p_0(r)x^r.
- Deduce from Equation A that if p_0(2m+r) is nonzero for every positive integer m then a_{2m}(r)=(-1)^m\prod_{j=1}^m{p_2(2j+r-2)\over p_0(2j+r)}.\nonumber
- Conclude that if p_0(r)=\alpha_0(r-r_1)(r-r_2) where r_1-r_2 is not an even integer, then y_1=x^{r_1}\sum_{m=0}^\infty a_{2m}(r_1)x^{2m}\quad\mbox{ and }\quad y_2=x^{r_2}\sum_{m=0}^\infty a_{2m}(r_2)x^{2m}\nonumber form a fundamental set of Frobenius solutions of Ly=0.
- Show that if p_0 satisfies the hypotheses of (c) then y_1=x^{r_1}\sum_{m=0}^\infty {(-1)^m\over 2^mm!\prod_{j=1}^m(2j+r_1-r_2)} \left(\gamma_2\over\alpha_0\right)^mx^{2m}\nonumber and y_2=x^{r_2}\sum_{m=0}^\infty {(-1)^m\over 2^mm!\prod_{j=1}^m(2j+r_2-r_1)} \left(\gamma_2\over\alpha_0\right)^mx^{2m}\nonumber form a fundamental set of Frobenius solutions of \alpha_0x^2y''+\beta_0xy'+(\gamma_0+\gamma_2x^2)y=0.\nonumber
57. Let
Ly=x^2q_0(x)y''+xq_1(x)y'+q_2(x)y,\nonumber
whereq_0(x)=\sum_{j=0}^\infty \alpha_jx^j,\quad q_1(x)=\sum_{j=0}^\infty \beta_jx^j,\quad q_2(x)=\sum_{j=0}^\infty \gamma_jx^j,\nonumber
and definep_j(r)=\alpha_jr(r-1)+\beta_jr+\gamma_j,\quad j=0,1,\dots.\nonumber
Let y=x^r\sum_{n=0}^\infty a_nx^n. Show thatLy=x^r\sum_{n=0}^\infty b_nx^n,\nonumber
whereb_n=\sum_{j=0}^np_j(n+r-j)a_{n-j}.\nonumber
58.
- Let L be as in Exercise 7.5.57. Show that if y(x,r)=x^r\sum_{n=0}^\infty a_n(r)x^n\nonumber where \begin{aligned} a_0(r)&=&1,\\[4pt] a_n(r)&=&-{1\over p_0(n+r)}\sum_{j=1}^n p_j(n+r-j)a_{n-j}(r),\quad n\ge1,\end{aligned}\nonumber then Ly(x,r)=p_0(r)x^r.\nonumber
- Conclude that if p_0(r)=\alpha_0(r-r_1)(r-r_2)\nonumber where r_1-r_2 isn’t an integer then y_1=y(x,r_1) and y_2=y(x,r_2) are solutions of Ly=0.
59. Let
Ly=x^2(\alpha_0+\alpha_qx^q)y''+x(\beta_0+\beta_qx^q)y'+ (\gamma_0+\gamma_qx^q)y\nonumber
where q is a positive integer, and definep_0(r)=\alpha_0r(r-1)+\beta_0r+\gamma_0\quad\mbox{ and }\quad p_q(r)=\alpha_qr(r-1)+\beta_qr+\gamma_q.\nonumber
- Show that if y(x,r)=x^{r}\sum_{m=0}^\infty a_{qm}(r)x^{qm}\nonumber where \begin{array}{rcl} a_0(r)&=&1,\\[4pt] a_{qm}(r)&=&-{p_q\left(q(m-1)+r\right)\over p_0(qm+r)}a_{q(m-1)}(r),\quad m\ge1, \end{array}\tag{A} then Ly(x,r)=p_0(r)x^r.\nonumber
- Deduce from Equation A that a_{qm}(r)=(-1)^m\prod_{j=1}^m{p_q\left(q(j-1)+r\right)\over p_0(qj+r)}.\nonumber
- Conclude that if p_0(r)=\alpha_0(r-r_1)(r-r_2) where r_1-r_2 is not an integer multiple of q, then y_1=x^{r_1}\sum_{m=0}^\infty a_{qm}(r_1)x^{qm}\quad\mbox{ and }\quad y_2=x^{r_2}\sum_{m=0}^\infty a_{qm}(r_2)x^{qm}\nonumber form a fundamental set of Frobenius solutions of Ly=0.
- Show that if p_0 satisfies the hypotheses of (c) then y_1=x^{r_1}\sum_{m=0}^\infty {(-1)^m\over q^mm!\prod_{j=1}^m(qj+r_1-r_2)} \left(\gamma_q\over\alpha_0\right)^mx^{qm}\nonumber and y_2=x^{r_2}\sum_{m=0}^\infty {(-1)^m\over q^mm!\prod_{j=1}^m(qj+r_2-r_1)} \left(\gamma_q\over\alpha_0\right)^mx^{qm}\nonumber form a fundamental set of Frobenius solutions of \alpha_0x^2y''+\beta_0xy'+(\gamma_0+\gamma_qx^q)y=0.\nonumber
60.
- Suppose \alpha_0,\alpha_1, and \alpha_2 are real numbers with \alpha_0\ne0, and \{a_n\}_{n=0}^\infty is defined by \alpha_0a_1+\alpha_1a_0=0\nonumber and \alpha_0a_n+\alpha_1a_{n-1}+\alpha_2a_{n-2}=0,\quad n\ge2.\nonumber Show that (\alpha_0+\alpha_1x+\alpha_2x^2)\sum_{n=0}^\infty a_nx^n=\alpha_0a_0,\nonumber and infer that \sum_{n=0}^\infty a_nx^n={\alpha_0a_0\over\alpha_0+\alpha_1x+\alpha_2x^2}.\nonumber
- With \alpha_0,\alpha_1, and \alpha_2 as in (a), consider the equation x^2(\alpha_0+\alpha_1x+\alpha_2 x^2)y''+x(\beta_0+\beta_1x+\beta_2x^2)y'+ (\gamma_0+\gamma_1x+\gamma_2x^2)y=0,\tag{A} and define p_j(r)=\alpha_jr(r-1)+\beta_jr+\gamma_j,\quad j=0,1,2.\nonumber Suppose {p_1(r-1)\over p_0(r)}= {\alpha_1\over\alpha_0},\qquad {p_2(r-2)\over p_0(r)}= {\alpha_2\over\alpha_0},\nonumber and p_0(r)=\alpha_0(r-r_1)(r-r_2),\nonumber where r_1>r_2. Show that y_1={x^{r_1}\over\alpha_0+\alpha_1x+\alpha_2x^2}\quad\mbox{ and }\quad y_2={x^{r_2}\over\alpha_0+\alpha_1x+\alpha_2x^2}\nonumber form a fundamental set of Frobenius solutions of Equation A on any interval (0,\rho) on which \alpha_0+\alpha_1x+\alpha_2x^2 has no zeros.
Q7.5.9
In Exercises 7.5.61-7.5.68 use the method suggested by Exercise 7.5.60 to find the general solution on some interval (0, \rho ).
61. 2x^2(1+x)y''-x(1-3x)y'+y=0
62. 6x^2(1+2x^2)y''+x(1+50x^2)y'+(1+30x^2)y=0
63. 28x^2(1-3x)y''-7x(5+9x)y'+7(2+9x)y=0
64. 9x^2(5+x)y''+9x(5+3x)y'-(5-8x)y=0
65. 8x^2(2-x^2)y''+2x(10-21x^2)y'-(2+35x^2)y=0
66. 4x^2(1+3x+x^2)y''-4x(1-3x-3x^2)y'+3(1-x+x^2)y=0
67. 3x^2(1+x)^2y''-x(1-10x-11x^2)y'+(1+5x^2)y=0
68. 4x^2(3+2x+x^2)y''-x(3-14x-15x^2)y'+(3+7x^2)y=0