9.2E: Higher Order Constant Coefficient Homogeneous Equations (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q9.2.1
In Exercises 9.2.1-9.2.14 find the general solution.
1. y‴−3y″+3y′−y=0
2. y(4)+8y″−9y=0
3. y‴−y″+16y′−16y=0
4. 2y‴+3y″−2y′−3y=0
5. y‴+5y″+9y′+5y=0
6. 4y‴−8y″+5y′−y=0
7. 27y‴+27y″+9y′+y=0
8. y(4)+y″=0
9. y(4)−16y=0
10. y(4)+12y″+36y=0
11. 16y(4)−72y″+81y=0
12. 6y(4)+5y‴+7y″+5y′+y=0
13. 4y(4)+12y‴+3y″−13y′−6y=0
14. y(4)−4y‴+7y″−6y′+2y=0
Q9.2.2
In Exercises 9.2.15-9.2.27 solve the initial value problem. Graph the solution for Exercises 9.2.17-9.2.19 and 9.2.27.
15. y‴−2y″+4y′−8y=0,y(0)=2,y′(0)=−2,y″(0)=0
16. y‴+3y″−y′−3y=0,y(0)=0,y′(0)=14,y″(0)=−40
17. y‴−y″−y′+y=0,y(0)=−2,y′(0)=9,y″(0)=4
18. y‴−2y′−4y=0,y(0)=6,y′(0)=3,y″(0)=22
19. 3y‴−y″−7y′+5y=0,y(0)=145,y′(0)=0,y″(0)=10
20. y‴−6y″+12y′−8y=0,y(0)=1,y′(0)=−1,y″(0)=−4
21. 2y‴−11y″+12y′+9y=0,y(0)=6,y′(0)=3,y″(0)=13
22. 8y‴−4y″−2y′+y=0,y(0)=4,y′(0)=−3,y″(0)=−1
23. y(4)−16y=0,y(0)=2,y′(0)=2,y″(0)=−2,y‴(0)=0
24. y(4)−6y‴+7y″+6y′−8y=0,y(0)=−2,y′(0)=−8,y″(0)=−14,y‴(0)=−62
25. 4y(4)−13y″+9y=0,y(0)=1,y′(0)=3,y″(0)=1,y‴(0)=3
26. y(4)+2y‴−2y″−8y′−8y=0,y(0)=5,y′(0)=−2,y″(0)=6,y‴(0)=8
27. 4y(4)+8y‴+19y″+32y′+12y=0,y(0)=3,y′(0)=−3,y″(0)=−72,y‴(0)=314
Q9.2.3
28. Find a fundamental set of solutions of the given equation, and verify that it is a fundamental set by evaluating its Wronskian at x=0.
- (D−1)2(D−2)y=0
- (D2+4)(D−3)y=0
- (D2+2D+2)(D−1)y=0
- D3(D−1)y=0
- (D2−1)(D2+1)y=0
- (D2−2D+2)(D2+1)y=0
Q9.2.4
In Exercises 9.2.29-9.2.38 find a fundamental set of solutions.
29. (D2+6D+13)(D−2)2D3y=0
30. (D−1)2(2D−1)3(D2+1)y=0
31. (D2+9)3D2y=0
32. (D−2)3(D+1)2Dy=0
33. (D2+1)(D2+9)2(D−2)y=0
34. (D4−16)2y=0
35. (4D2+4D+9)3y=0
36. D3(D−2)2(D2+4)2y=0
37. (4D2+1)2(9D2+4)3y=0
38. [(D−1)4−16]y=0
Q9.2.5
39 It can be shown that |11⋯1a1a2⋯ana21a22⋯a2n⋮⋮⋱⋮an−11an−12⋯an−1n|=∏1≤i<j≤n(aj−ai),
where the left side is the Vandermonde determinant and the right side is the product of all factors of the form (aj−ai) with i and j between 1 and n and i<j.>
- Verify (A) for n=2 and n=3.
- Find the Wronskian of {ea1x,ea2x,…,eanx}.
40. A theorem from algebra says that if P1 and P2 are polynomials with no common factors then there are polynomials Q1 and Q2 such that Q1P1+Q2P2=1. This implies that Q1(D)P1(D)y+Q2(D)P2(D)y=y for every function y with enough derivatives for the left side to be defined.
- Use this to show that if P1 and P2 have no common factors and P1(D)y=P2(D)y=0 then y=0.
- Suppose P1 and P2 are polynomials with no common factors. Let u1, …, ur be linearly independent solutions of P1(D)y=0 and let v1, …, vs be linearly independent solutions of P2(D)y=0. Use (a) to show that {u1,…,ur,v1,…,vs} is a linearly independent set.
- Suppose the characteristic polynomial of the constant coefficient equation a0y(n)+a1y(n−1)+⋯+any=0 has the factorization p(r)=a0p1(r)p2(r)⋯pk(r), where each pj is of the form pj(r)=(r−rj)nj or pj(r)=[(r−λj)2+w2j]mj(ωj>0) and no two of the polynomials p1, p2, …, pk have a common factor. Show that we can find a fundamental set of solutions {y1,y2,…,yn} of (A) by finding a fundamental set of solutions of each of the equations pj(D)y=0,1≤j≤k, and taking {y1,y2,…,yn} to be the set of all functions in these separate fundamental sets.
41.
- Show that if z=p(x)cosωx+q(x)sinωx, where p and q are polynomials of degree ≤k, then (D2+ω2)z=p1(x)cosωx+q1(x)sinωx, where p1 and q1 are polynomials of degree ≤k−1.
- Apply (a) m times to show that if z is of the form (A) where p and q are polynomial of degree ≤m−1, then (D2+ω2)mz=0.
- Use Equation 9.2.17 to show that if y=eλxz then [(D−λ)2+ω2]my=eλx(D2+ω2)mz.
- Conclude from (b) and (c) that if p and q are arbitrary polynomials of degree ≤m−1 then y=eλx(p(x)cosωx+q(x)sinωx) is a solution of [(D−λ)2+ω2]my=0.
- Conclude from (d) that the functions eλxcosωx,xeλxcosωx,…,xm−1eλxcosωx,eλxsinωx,xeλxsinωx,…,xm−1eλxsinωx are all solutions of (C).
- Complete the proof of Theorem 9.2.2 by showing that the functions in (D) are linearly independent.
42.
- Use the trigonometric identities cos(A+B)=cosAcosB−sinAsinBsin(A+B)=cosAsinB+sinAcosB to show that (cosA+isinA)(cosB+isinB)=cos(A+B)+isin(A+B).
- Apply (a) repeatedly to show that if n is a positive integer then n∏k=1(cosAk+isinAk)=cos(A1+A2+⋯+An)+isin(A1+A2+⋯+An).
- Infer from (b) that if n is a positive integer then (cosθ+isinθ)n=cosnθ+isinnθ.
- Show that (A) also holds if n=0 or a negative integer. HINT: Verify by direct calculation that (cosθ+isinθ)−1=(cosθ−isinθ). Then replace θ by −θ in (A).
- Now suppose n is a positive integer. Infer from (A) that if zk=cos(2kπn)+isin(2kπn),k=0,1,…,n−1, and ζk=cos((2k+1)πn)+isin((2k+1)πn),k=0,1,…,n−1, then znk=1 and ζnk=−1,k=0,1,…,n−1. (Why don’t we also consider other integer values for k?)
- Let ρ be a positive number. Use (e) to show that zn−ρ=(z−ρ1/nz0)(z−ρ1/nz1)⋯(z−ρ1/nzn−1) and zn+ρ=(z−ρ1/nζ0)(z−ρ1/nζ1)⋯(z−ρ1/nζn−1).
43. Use (e) of Exercise 9.2.42 to find a fundamental set of solutions of the given equation.
- y‴−y=0
- y‴+y=0
- y(4)+64y=0
- y(6)−y=0
- y(6)+64y=0
- [(D−1)6−1]y=0
- y(5)+y(4)+y‴+y″+y′+y=0
44. An equation of the form a0xny(n)+a1xn−1y(n−1)+⋯+an−1xy′+any=0,x>0, where a0, a1, …, an are constants, is an Euler or equidimensional equation. Show that if x=et and Y(t)=y(x(t)), then
xdydx=dYdtx2d2ydx2=d2Ydt2−dYdtx3d3ydx3=d3Ydt3−3d2Ydt2+2dYdt.
In general, it can be shown that if r is any integer ≥2 then
xrdrydxr=drYdtr+A1rdr−1Ydtr−1+⋯+Ar−1,rdYdt
where A1r, …, Ar−1,r are integers. Use these results to show that the substitution (B) transforms (A) into a constant coefficient equation for Y as a function of t.
45. Use Exercise 9.2.44 to show that a function y=y(x) satisfies the equation a0x3y‴+a1x2y″+a2xy′+a3y=0, on (0,∞) if and only if the function Y(t)=y(et) satisfies a0d3Ydt3+(a1−3a0)d2Ydt2+(a2−a1+2a0)dYdt+a3Y=0. Assuming that a0, a1, a2, a3 are real and a0≠0, find the possible forms for the general solution of (A).