Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

9.3E: Undetermined Coefficients for Higher Order Equations (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q9.3.1

In Exercises 9.3.1-9.3.59 find a particular solution.

1. y6y+11y6y=ex(4+76x24x2)

2. y2y5y+6y=e3x(3223x+6x2)

3. 4y+8yy2y=ex(4+45x+9x2)

4. y+3yy3y=e2x(217x+3x2)

5. y+3yy3y=ex(1+2x+24x2+16x3)

6. y+y2y=ex(14+34x+15x2)

7. 4y+8yy2y=e2x(115x)

8. yyy+y=ex(7+6x)

9. 2y7y+4y+4y=e2x(17+30x)

10. y5y+3y+9y=2e3x(1124x2)

11. y7y+8y+16y=2e4x(13+15x)

12. 8y12y+6yy=ex/2(1+4x)

13. y(4)+3y3y7y+6y=ex(12+8x8x2)

14. y(4)+3y+y3y2y=3e2x(11+12x)

15. y(4)+8y+24y+32y=16e2x(1+x+x2x3)

16. 4y(4)11y9y2y=ex(16x)

17. y(4)2y+3yy=ex(3+4x+x2)

18. y(4)4y+6y4y+2y=e2x(24+x+x4)

19. 2y(4)+5y5y2y=18ex(5+2x)

20. y(4)+y2y6y4y=e2x(4+28x+15x2)

21. 2y(4)+y2yy=3ex/2(16x)

22. y(4)5y+4y=ex(3+x3x2)

23. y(4)2y3y+4y+4y=e2x(13+33x+18x2)

24. y(4)3y+4y=e2x(15+26x+12x2)

25. y(4)2y+2yy=ex(1+x)

26. 2y(4)5y+3y+yy=ex(11+12x)

27. y(4)+3y+3y+y=ex(524x+10x2)

28. y(4)7y+18y20y+8y=e2x(38x5x2)

29. yy4y+4y=ex[(16+10x)cosx+(3010x)sinx]

30. y+y4y4y=ex[(122x)cos2x(1+6x)sin2x]

31. yy+2y2y=e2x[(27+5xx2)cosx+(2+13x+9x2)sinx]

32. y2y+y2y=ex[(95x+4x2)cos2x(65x3x2)sin2x]

33. y+3y+4y+12y=8cos2x16sin2x

34. yy+2y=ex[(20+4x)cosx(12+12x)sinx]

35. y7y+20y24y=e2x[(138x)cos2x(84x)sin2x]

36. y6y+18y=e3x[(23x)cos3x(3+3x)sin3x]

37. y(4)+2y2y8y8y=ex(8cosx+16sinx)

38. y(4)3y+2y+2y4y=ex(2cos2xsin2x)

39. y(4)8y+24y32y+15y=e2x(15xcos2x+32sin2x)

40. y(4)+6y+13y+12y+4y=ex[(4x)cosx(5+x)sinx]

41. y(4)+3y+2y2y4y=ex(cosxsinx)

42. y(4)5y+13y19y+10y=ex(cos2x+sin2x)

43. y(4)+8y+32y+64y+39y=e2x[(415x)cos3x(4+15x)sin3x]

44. y(4)5y+13y19y+10y=ex[(7+8x)cos2x+(84x)sin2x]

45. y(4)+4y+8y+8y+4y=2ex(cosx2sinx)

46. y(4)8y+32y64y+64y=e2x(cos2xsin2x)

47. y(4)8y+26y40y+25y=e2x[3cosx(1+3x)sinx]

48. y4y+5y2y=e2x4ex2cosx+4sinx

49. yy+yy=5e2x+2ex4cosx+4sinx

50. yy=2(1+x)+4ex6ex+96e3x

51. y4y+9y10y=10e2x+20exsin2x10

52. y+3y+3y+y=12ex+9cos2x13sin2x

53. y+yyy=4ex(16x)2xcosx+2(1+x)sinx

54. y(4)5y+4y=12ex+6ex+10cosx

55. y(4)4y+11y14y+10y=ex(sinx+2cos2x)

56. y(4)+2y3y4y+4y=2ex(1+x)+e2x

57. y(4)+4y=sinhxcosxcoshxsinx

58. y(4)+5y+9y+7y+2y=ex(30+24x)e2x

59. y(4)4y+7y6y+2y=ex(12x2cosx+2sinx)

Q9.3.2

In Exercises 9.3.60-9.3.68 find the general solution.

60. yyy+y=e2x(10+3x)

61. y+y2y=e3x(9+67x+17x2)

62. y6y+11y6y=e2x(54x3x2)

63. y+2y+y=2ex(718x+6x2)

64. y3y+3yy=ex(1+x)

65. y(4)2y+y=ex(49x+3x2)

66. y+2yy2y=e2x[(232x)cosx+(89x)sinx]

67. y(4)3y+4y2y=ex[(28+6x)cos2x+(1112x)sin2x]

68. y(4)4y+14y20y+25y=ex[(2+6x)cos2x+3sin2x]

Q9.3.3

In Exercises 9.3.69-9.3.74 solve the initial value problem and graph the solution.

69. y2y5y+6y=2ex(16x),y(0)=2,y(0)=7,y(0)=9

70. yyy+y=ex(48x),y(0)=2,y(0)=0,y(0)=0

71. 4y3yy=ex/2(23x),y(0)=1,y(0)=15,y(0)=17

72. y(4)+2y+2y+2y+y=ex(2012x),y(0)=3,y(0)=4,y(0)=7,y(0)=22

73. y+2y+y+2y=30cosx10sinx,y(0)=3,y(0)=4,y(0)=16

74. y(4)3y+5y2y=2ex(cosxsinx),y(0)=2,y(0)=0,y(0) = 1,y(0)=5

Q9.3.4

75. Prove: A function y is a solution of the constant coefficient nonhomogeneous equation

a0y(n)+a1y(n1)++any=eαxG(x)

if and only if y=ueαx, where u satisfies the differential equation

a0u(n)+p(n1)(α)(n1)!u(n1)+p(n2)(α)(n2)!u(n2)++p(α)u=G(x)

and

p(r)=a0rn+a1rn1++an

is the characteristic polynomial of the complementary equation

a0y(n)+a1y(n1)++any=0.

76. Prove:

  1. The equation a0u(n)+p(n1)(α)(n1)!u(n1)+p(n2)(α)(n2)!u(n2)++P(α)u=(p0+p1x++pkxk)cosωx+(q0+q1x++qkxk)sinωx has a particular solution of the form up=xm(u0+u1x++ukxk)cosωx+(v0+v1x++vkxk)sinωx.
  2. If λ+iω is a zero of p with multiplicity m1, then (A) can be written as a(u+ω2u)=(p0+p1x++pkxk)cosωx+(q0+q1x++qkxk)sinωx, which has a particular solution of the form up=U(x)cosωx+V(x)sinωx, where U(x)=u0x+u1x2++ukxk+1,V(x)=v0x+v1x2++vkxk+1 and a(U(x)+2ωV(x))=p0+p1x++pkxka(V(x)2ωU(x))=q0+q1x++qkxk.

This page titled 9.3E: Undetermined Coefficients for Higher Order Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?