Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

9.4E: Variation of Parameters for Higher Order Equations (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q9.4.1

In Exercises 9.4.1-9.4.21 find a particular solution, given the fundamental set of solutions of the complementary equation.

1. x3yx2(x+3)y+2x(x+3)y2(x+3)y=4x4; {x,x2,xex}

2. y+6xy+(6+12x2)y+(12x+8x3)y=x1/2ex2; {ex2,xex2,x2ex2}

3. x3y3x2y+6xy6y=2x; {x,x2,x3}

4. x2y+2xy(x2+2)y=2x2;{1,ex/x,ex/x}

5. x3y3x2(x+1)y+3x(x2+2x+2)y(x3+3x2+6x+6)y=x4e3x;{xex,x2ex,x3ex}

6. x(x22)y+(x26)y+x(2x2)y+(6x2)y=2(x22)2; {ex,ex,1/x}

7. xy(x3)y(x+2)y+(x1)y=4ex; {ex,ex/x,ex/x}

8. 4x3y+4x2y5xy+2y=30x2; {x,1/x,x2}

9. x(x21)y+(5x2+1)y+2xy2y=12x2; {x,1/(x1),1/(x+1)}

10. x(1x)y+(x23x+3)y+xyy=2(x1)2; {x,1/x,ex/x}

11. x3y+x2y2xy+2y=x2; {x,x2,1/x}

12. xyyxy+y=x2; {x,ex,ex}

13. xy(4)+4y=6ln|x|; {1,x,x2,1/x}

14. 16x4y(4)+96x3y+72x2y24xy+9y=96x5/2; {x,1/x,x3/2,x3/2}

15. x(x26)y(4)+2(x212)y+x(6x2)y+2(12x2)y=2(x26)2;{1,1/x,ex,ex}

16. x4y(4)4x3y+12x2y24xy+24y=x4; {x,x2,x3,x4}

17. x4y(4)4x3y+2x2(6x2)y+4x(x26)y+(x44x2+24)y=4x5ex;{xex,x2ex,xex,x2ex}

18. x4y(4)+6x3y+2x2y4xy+4y=12x2; {x,x2,1/x,1/x2}

19. xy(4)+4y2xy4y+xy=4ex; {ex,ex,ex/x,ex/x}

20. xy(4)+(46x)y+(13x18)y+(2612x)y+(4x12)y=3ex; {ex,e2x,ex/x,e2x/x}

21. x4y(4)4x3y+x2(12x2)y+2x(x212)y+2(12x2)y=2x5; {x,x2,xex,xex}

Q9.4.2

In Exercises 9.4.22-9.4.33 solve the initial value problem, given the fundamental set of solutions of the complementary equation. Graph the solution for Exercises 9.4.22, 9.4.26, 9.4.29, and 9.4.30.

22. x3y2x2y+3xy3y=4x,y(1)=4,y(1)=4,y(1)=2; {x,x3,xlnx}

23. x3y5x2y+14xy18y=x3,y(1)=0,y(1)=1,y(1)=7; {x2,x3,x3lnx}

24. (56x)y+(12x4)y+(6x23)y+(2212x)y=(6x5)2ex{y(0)=4,y(0)=32,y(0)=19;{ex,e2x,xex}

25. x3y6x2y+16xy16y=9x4,y(1)=2,y(1)=1,y(1)=5;{x,x4,x4ln|x|}

26. (x22x+2)yx2y+2xy2y=(x22x+2)2,y(0)=0,y(0)=5,y(0)=0;{x,x2,ex}

27. x3y+x2y2xy+2y=x(x+1),y(1)=6,y(1)=[4pt]6,y(1)=52;{x,x2,1/x}

28. (3x1)y(12x1)y+9(x+1)y9y=2ex(3x1)2,y(0)=34,y(0)=54,y(0)=14;{x+1,ex,e3x}

29. (x22)y2xy+(2x2)y+2xy=2(x22)2,y(0)=1,y(0)=5,y(0)=5;{x2,ex,ex}

30. x4y(4)+3x3yx2y+2xy2y=9x2,y(1)=7,y(1)=11,y(1)=5,y(1)=6;{x,x2,1/x,xlnx}

31. (2x1)y(4)4xy+(52x)y+4xy4y=6(2x1)2,y(0)=554,y(0)=0,y(0)=13,y(0)=1;{x,ex,ex,e2x}

32. 4x4y(4)+24x3y+23x2yxy+y=6x,y(1)=2,y(1)=0,y(1)=4,y(1)=374;{x,x,1/x,1/x}

33. x4y4+5x3y3x2y6xy+6y=[4pt]x3,y(1)=1,y(1)=7,

y(1)=1,y(1)=31; {x,x3,1/x,1/x2}

Q9.4.3

34. Su[4pt]ose the equation

P0(x)y(n)+P1(x)y(n1)++Pn(x)y=F(x)

is normal on an interval (a,b). Let {y1,y2,,yn} be a fundamental set of solutions of its complementary equation on (a,b), let W be the Wronskian of {y1,y2,,yn}, and let Wj be the determinant obtained by deleting the last row and the j-th column of W. Su[4pt]ose x0 is in (a,b), let

uj(x)=(1)(nj)xx0F(t)Wj(t)P0(t)W(t)dt,1jn,

and define

yp=u1y1+u2y2++unyn.

  1. Show that yp is a solution of (A) and that y(r)p=u1y(r)1+u2y(r)2+uny(r)n,1rn1, and y(n)p=u1y(n)1+u2y(n)2++uny(n)n+FP0. HINT: See the derivation of the method of variation of parameters at the beginning of the section.
  2. Show that yp is the solution of the initial value problem P0(x)y(n)+P1(x)y(n1)++Pn(x)y=F(x),y(x0)=0,y(x0)=0,,y(n1)(x0)=0.
  3. Show that yp can be wri[4pt]en as yp(x)=xx0G(x,t)F(t)dt, where G(x,t)=1P0(t)W(t)|y1(t)y2(t)yn(t)y1(t)y2(t)yn(t)y(n2)1(t)y(n2)2(t)y(n2)n(t)y1(x)y2(x)yn(x)|, which is called the Green’s function for (A).
  4. Show that jG(x,t)xj=1P0(t)W(t)|y1(t)y2(t)yn(t)y1(t)y2(t)yn(t)y(n2)1(t)y(n2)2(t)y(n2)n(t)y(j)1(x)y(j)2(x)y(j)n(x)|,0jn.
  5. Show that if a<t<b then jG(x,t)xj|x=t={0,1jn21P0(t),j=n1
  6. Show that y(j)p(x)={xx0jG(x,t)xjF(t)dt,1jn1,F(x)P0(x)+xx0(n)G(x,t)xnF(t)dt,j=n.

Q9.4.4

In Exercises 9.4.35-9.4.[4pt] use the method suggested by Exercise 9.4.34 to find a particular solution in the form yp=xx0G(x,t)F(t)dt, given the indicated fundamental set of solutions. Assume that x and x0 are in an interval on which the equation is normal.

35. y+2yy2y=F(x);{ex,ex,e2x}

36. x3y+x2y2xy+2y=F(x);{x,x2,1/x}

37. x3yx2(x+3)y+2x(x+3)y2(x+3)y=F(x);{x,x2,xex}

38. x(1x)y+(x23x+3)y+xyy=F(x);{x,1/x,ex/x}

39. y(4)5y+4y=F(x);{ex,ex,e2x,e2x}

[4pt]. xy(4)+4y=F(x);{1,x,x2,1/x}

[4pt]. x4y(4)+6x3y+2x2y4xy+4y=F(x); {x,x2,1/x,1/x2}

[4pt]. xy(4)y4xy+4y=F(x);{1,x2,e2x,e2x}


This page titled 9.4E: Variation of Parameters for Higher Order Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?