9.4E: Variation of Parameters for Higher Order Equations (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q9.4.1
In Exercises 9.4.1-9.4.21 find a particular solution, given the fundamental set of solutions of the complementary equation.
1. x3y‴−x2(x+3)y″+2x(x+3)y′−2(x+3)y=−4x4; {x,x2,xex}
2. y‴+6xy″+(6+12x2)y′+(12x+8x3)y=x1/2e−x2; {e−x2,xe−x2,x2e−x2}
3. x3y‴−3x2y″+6xy′−6y=2x; {x,x2,x3}
4. x2y‴+2xy″−(x2+2)y′=2x2;{1,ex/x,e−x/x}
5. x3y‴−3x2(x+1)y″+3x(x2+2x+2)y′−(x3+3x2+6x+6)y=x4e−3x;{xex,x2ex,x3ex}
6. x(x2−2)y‴+(x2−6)y″+x(2−x2)y′+(6−x2)y=2(x2−2)2; {ex,e−x,1/x}
7. xy‴−(x−3)y″−(x+2)y′+(x−1)y=−4e−x; {ex,ex/x,e−x/x}
8. 4x3y‴+4x2y″−5xy′+2y=30x2; {√x,1/√x,x2}
9. x(x2−1)y‴+(5x2+1)y″+2xy′−2y=12x2; {x,1/(x−1),1/(x+1)}
10. x(1−x)y‴+(x2−3x+3)y″+xy′−y=2(x−1)2; {x,1/x,ex/x}
11. x3y‴+x2y″−2xy′+2y=x2; {x,x2,1/x}
12. xy‴−y″−xy′+y=x2; {x,ex,e−x}
13. xy(4)+4y‴=6ln|x|; {1,x,x2,1/x}
14. 16x4y(4)+96x3y‴+72x2y″−24xy′+9y=96x5/2; {√x,1/√x,x3/2,x−3/2}
15. x(x2−6)y(4)+2(x2−12)y‴+x(6−x2)y″+2(12−x2)y′=2(x2−6)2;{1,1/x,ex,e−x}
16. x4y(4)−4x3y‴+12x2y″−24xy′+24y=x4; {x,x2,x3,x4}
17. x4y(4)−4x3y‴+2x2(6−x2)y″+4x(x2−6)y′+(x4−4x2+24)y=4x5ex;{xex,x2ex,xe−x,x2e−x}
18. x4y(4)+6x3y‴+2x2y″−4xy′+4y=12x2; {x,x2,1/x,1/x2}
19. xy(4)+4y‴−2xy″−4y′+xy=4ex; {ex,e−x,ex/x,e−x/x}
20. xy(4)+(4−6x)y‴+(13x−18)y″+(26−12x)y′+(4x−12)y=3ex; {ex,e2x,ex/x,e2x/x}
21. x4y(4)−4x3y‴+x2(12−x2)y″+2x(x2−12)y′+2(12−x2)y=2x5; {x,x2,xex,xe−x}
Q9.4.2
In Exercises 9.4.22-9.4.33 solve the initial value problem, given the fundamental set of solutions of the complementary equation. Graph the solution for Exercises 9.4.22, 9.4.26, 9.4.29, and 9.4.30.
22. x3y‴−2x2y″+3xy′−3y=4x,y(1)=4,y′(1)=4,y″(1)=2; {x,x3,xlnx}
23. x3y‴−5x2y″+14xy′−18y=x3,y(1)=0,y′(1)=1,y″(1)=7; {x2,x3,x3lnx}
24. (5−6x)y‴+(12x−4)y″+(6x−23)y′+(22−12x)y=−(6x−5)2ex{y(0)=−4,y′(0)=−32,y″(0)=−19;{ex,e2x,xe−x}
25. x3y‴−6x2y″+16xy′−16y=9x4,y(1)=2,y′(1)=1,y″(1)=5;{x,x4,x4ln|x|}
26. (x2−2x+2)y‴−x2y″+2xy′−2y=(x2−2x+2)2,y(0)=0,y′(0)=5,y″(0)=0;{x,x2,ex}
27. x3y‴+x2y″−2xy′+2y=x(x+1),y(−1)=−6,y′(−1)=[4pt]6,y″(−1)=−52;{x,x2,1/x}
28. (3x−1)y‴−(12x−1)y″+9(x+1)y′−9y=2ex(3x−1)2,y(0)=34,y′(0)=54,y″(0)=14;{x+1,ex,e3x}
29. (x2−2)y‴−2xy″+(2−x2)y′+2xy=2(x2−2)2,y(0)=1,y′(0)=−5,y″(0)=5;{x2,ex,e−x}
30. x4y(4)+3x3y‴−x2y″+2xy′−2y=9x2,y(1)=−7,y′(1)=−11,y″(1)=−5,y‴(1)=6;{x,x2,1/x,xlnx}
31. (2x−1)y(4)−4xy‴+(5−2x)y″+4xy′−4y=6(2x−1)2,y(0)=554,y′(0)=0,y″(0)=13,y‴(0)=1;{x,ex,e−x,e2x}
32. 4x4y(4)+24x3y‴+23x2y″−xy′+y=6x,y(1)=2,y′(1)=0,y″(1)=4,y‴(1)=−374;{x,√x,1/x,1/√x}
33. x4y4+5x3y‴−3x2y″−6xy′+6y=[4pt]x3,y(−1)=−1,y′(−1)=−7,
y″(−1)=−1,y‴(−1)=−31; {x,x3,1/x,1/x2}
Q9.4.3
34. Su[4pt]ose the equation
P0(x)y(n)+P1(x)y(n−1)+⋯+Pn(x)y=F(x)
is normal on an interval (a,b). Let {y1,y2,…,yn} be a fundamental set of solutions of its complementary equation on (a,b), let W be the Wronskian of {y1,y2,…,yn}, and let Wj be the determinant obtained by deleting the last row and the j-th column of W. Su[4pt]ose x0 is in (a,b), let
uj(x)=(−1)(n−j)∫xx0F(t)Wj(t)P0(t)W(t)dt,1≤j≤n,
and define
yp=u1y1+u2y2+⋯+unyn.
- Show that yp is a solution of (A) and that y(r)p=u1y(r)1+u2y(r)2⋯+uny(r)n,1≤r≤n−1, and y(n)p=u1y(n)1+u2y(n)2+⋯+uny(n)n+FP0. HINT: See the derivation of the method of variation of parameters at the beginning of the section.
- Show that yp is the solution of the initial value problem P0(x)y(n)+P1(x)y(n−1)+⋯+Pn(x)y=F(x),y(x0)=0,y′(x0)=0,…,y(n−1)(x0)=0.
- Show that yp can be wri[4pt]en as yp(x)=∫xx0G(x,t)F(t)dt, where G(x,t)=1P0(t)W(t)|y1(t)y2(t)⋯yn(t)y′1(t)y′2(t)⋯y′n(t)⋮⋮⋱⋮y(n−2)1(t)y(n−2)2(t)⋯y(n−2)n(t)y1(x)y2(x)⋯yn(x)|, which is called the Green’s function for (A).
- Show that ∂jG(x,t)∂xj=1P0(t)W(t)|y1(t)y2(t)⋯yn(t)y′1(t)y′2(t)⋯y′n(t)⋮⋮⋱⋮y(n−2)1(t)y(n−2)2(t)⋯y(n−2)n(t)y(j)1(x)y(j)2(x)⋯y(j)n(x)|,0≤j≤n.
- Show that if a<t<b then ∂jG(x,t)∂xj|x=t={0,1≤j≤n−21P0(t),j=n−1
- Show that y(j)p(x)={∫xx0∂jG(x,t)∂xjF(t)dt,1≤j≤n−1,F(x)P0(x)+∫xx0∂(n)G(x,t)∂xnF(t)dt,j=n.
Q9.4.4
In Exercises 9.4.35-9.4.[4pt] use the method suggested by Exercise 9.4.34 to find a particular solution in the form yp=∫xx0G(x,t)F(t)dt, given the indicated fundamental set of solutions. Assume that x and x0 are in an interval on which the equation is normal.
35. y‴+2y′−y′−2y=F(x);{ex,e−x,e−2x}
36. x3y‴+x2y″−2xy′+2y=F(x);{x,x2,1/x}
37. x3y‴−x2(x+3)y″+2x(x+3)y′−2(x+3)y=F(x);{x,x2,xex}
38. x(1−x)y‴+(x2−3x+3)y″+xy′−y=F(x);{x,1/x,ex/x}
39. y(4)−5y″+4y=F(x);{ex,e−x,e2x,e−2x}
[4pt]. xy(4)+4y‴=F(x);{1,x,x2,1/x}
[4pt]. x4y(4)+6x3y‴+2x2y″−4xy′+4y=F(x); {x,x2,1/x,1/x2}
[4pt]. xy(4)−y‴−4xy′+4y′=F(x);{1,x2,e2x,e−2x}