$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

13.1E: Boundary Value Problems (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

[exer:13.1.1] Verify that $$B_{1}$$ and $$B_{2}$$ are linear operators; that is, if $$c_{1}$$ and $$c_{2}$$ are constants then $B_{i}(c_{1}y_{1}+c_{2}y_{2})=c_{1}B_{i}(y_{1})+c_{2}B_{i}(y_{2}),\quad i=1,2.$

[exer:13.1.2] $$y''-y=x$$, $$y(0)=-2$$,$$y(1)=1$$

[exer:13.1.3] $$y''=2-3x$$, $$y(0)=0$$,$$y(1)-y'(1)=0$$

[exer:13.1.4] $$y''-y=x$$, $$y(0)+y'(0)=3$$,$$y(1)-y'(1)=2$$

[exer:13.1.5] $$y''+4y=1$$, $$y(0)=3$$, $$y(\pi/2)+y'(\pi/2)=-7$$

[exer:13.1.6] $$y''-2y'+y=2e^{x}$$, $$y(0)-2y'(0)=3$$, $$y(1)+y'(1)=6e$$

[exer:13.1.7] $$y''-7y'+12y=4e^{2x}$$, $$y(0)+y'(0)=8$$, $$y(1)=-7e^{2}$$ (see Example [example:13.1.5})

[exer:13.1.8] State a condition on $$F$$ such that the boundary value problem $y''=F(x), \quad y(0)=0, \quad y(1)-y'(1)=0$ has a solution, and find all solutions.

[exer:13.1.9]

State a condition on $$a$$ and $$b$$ such that the boundary value problem

$y''+y=F(x),\quad y(a)=0,\quad y(b)=0 \tag{A}$

has a unique solution for every continuous $$F$$, and find the solution by the method used to prove Theorem [thmtype:13.1.3}

In the case where $$a$$ and $$b$$ don’t satisfy the condition you gave for (a), state necessary and sufficient on $$F$$ such that (A) has a solution, and find all solutions by the method used to prove Theorem [thmtype:13.1.4}.

[exer:13.1.10] Follow the instructions in Exercise [exer:13.1.9} for the boundary value problem $y''+y=F(x),\quad y(a)=0,\quad y'(b)=0.$

[exer:13.1.11] Follow the instructions in Exercise [exer:13.1.9} for the boundary value problem $y''+y=F(x),\quad y'(a)=0,\quad y'(b)=0.$

[exer:13.1.12] $$y''-y=F(x)$$,$$y(a)=0$$,$$y(b)=0$$

[exer:13.1.13] $$y''-y=F(x)$$,$$y(a)=0$$,$$y'(b)=0$$

[exer:13.1.14] $$y''-y=F(x)$$,$$y'(a)=0$$,$$y'(b)=0$$

[exer:13.1.15] $$y''-y=F(x)$$,$$y(a)-y'(a)=0$$,$$y(b)+y'(b)=0$$

[exer:13.1.16] $$y''+ \omega^{2}y=F(x)$$,$$y(0)=0$$,$$y(\pi)=0$$

[exer:13.1.17] $$y''+ \omega^{2}y=F(x)$$,$$y(0)=0$$,$$y'(\pi)=0$$

[exer:13.1.18] $$y''+ \omega^{2}y=F(x)$$,$$y'(0)=0$$,$$y(\pi)=0$$

[exer:13.1.19] $$y''+ \omega^{2}y=F(x)$$,$$y'(0)=0$$,$$y'(\pi)=0$$

[exer:13.1.20] Let $$\{z_{1},z_{2}\}$$ be a fundamental set of solutions of $$Ly=0$$. Given that the homogeneous boundary value problem $Ly=0, \quad B_{1}(y)=0,\quad B_{2}(y)=0$ has a nontrivial solution, express it explicity in terms of $$z_{1}$$ and $$z_{2}$$.

[exer:13.1.21] If the boundary value problem has a solution for every continuous $$F$$, then find the Green’s function for the problem and use it to write an explicit formula for the solution. Otherwise, if the boundary value problem does not have a solution for every continuous $$F$$, find a necessary and sufficient condition on $$F$$ for the problem to have a solution, and find all solutions. Assume that $$a<b$$.

$$y''=F(x)$$, $$y(a)=0$$,$$y(b)=0$$

$$y''=F(x)$$, $$y(a)=0$$,$$y'(b)=0$$

$$y''=F(x)$$, $$y'(a)=0$$,$$y(b)=0$$

$$y''=F(x)$$, $$y'(a)=0$$,$$y'(b)=0$$

[exer:13.1.22] Find the Green’s function for the boundary value problem $y''=F(x), \quad y(0)-2y'(0)=0, \quad y(1)+2y'(1)=0. \tag{A}$ Then use the Green’s function to solve (A) with

1. $$F(x)=1$$,
2. $$F(x)=x$$, and
3. $$F(x)=x^{2}$$.

[exer:13.1.23] Find the Green’s function for the boundary value problem $x^{2}y''+xy'+(x^{2}-1/4)y=F(x), \quad y(\pi/2)=0,\quad y(\pi)=0, \tag{A}$ given that $y_{1}(x)=\frac{\cos x}{\sqrt{x}} \text{\; and\; \; } y_{2}(x)=\frac{\sin x}{\sqrt{x}}$ are solutions of the complementary equation. Then use the Green’s function to solve (A) with

1. $$F(x)=x^{3/2}$$ and
2. $$F(x)=x^{5/2}$$.

[exer:13.1.24] Find the Green’s function for the boundary value problem $x^{2}y''-2xy'+2y=F(x), \quad y(1)=0,\quad y(2)=0, \tag{A}$ given that $$\{x,x^{2}\}$$ is a fundamental set of solutions of the complementary equation. Then use the Green’s function to solve (A) with

1. $$F(x)=2x^{3}$$ and
2. $$F(x)~=~6x^{4}$$.

[exer:13.1.25] Find the Green’s function for the boundary value problem $x^{2}y''+xy'-y=F(x), \quad y(1)-2y'(1)=0,\quad y'(2)=0, \tag{A}$ given that $$\{x,1/x\}$$ is a fundamental set of solutions of the complementary equation. Then use the Green’s function to solve (A) with

1. $$F(x)=1$$,
2. $$F(x)=x^{2}$$, and
3. $$F(x)=x^{3}$$.

[exer:13.1.26] $$y''=F(x)$$, $$\alpha y(0)+\beta y'(0)=0$$, $$\rho y(1)+\delta y'(1)=0$$

[exer:13.1.27] $$y''+y=F(x)$$, $$\alpha y(0)+\beta y'(0)=0$$, $$\rho y(\pi)+\delta y'(\pi)=0$$

[exer:13.1.28] $$y''+y=F(x)$$, $$\alpha y(0)+\beta y'(0)=0$$, $$\rho y(\pi/2)+\delta y'(\pi/2)=0$$

[exer:13.1.29] $$y''-2y'+2y=F(x)$$, $$\alpha y(0)+\beta y'(0)=0$$, $$\rho y(\pi)+\delta y'(\pi)=0$$

[exer:13.1.30] $$y''-2y'+2y=F(x)$$, $$\alpha y(0)+\beta y'(0)=0$$, $$\rho y(\pi/2)+\delta y'(\pi/2)=0$$

[exer:13.1.31] Find necessary and sufficient conditions on $$\alpha$$, $$\beta$$, $$\rho$$, and $$\delta$$ for the boundary value problem $y''-y=F(x), \quad \alpha y(a)+\beta y'(a)=0, \quad \rho y(b)+\delta y'(b)=0 \tag{A}$ to have a unique solution for every continuous $$F$$, and find the Green’s function for (A). Assume that $$a<b$$.

[exer:13.1.32] Show that the assumptions of Theorem [thmtype:13.1.3} imply that the unique solution of $Ly=F, \quad B_{1}(y)=k_{1},\quad B_{2}(y)=f_{2}$ is $y=\int_{a}^{b} G(x,t)F(t)\,dt +\frac{k_{2}}{B_{2}}(y_{1})y_{1} +\frac{k_{1}}{B_{1}(y_{2})}y_{2}.$