Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts


  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables. Vol. 55, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office,Washington, DC, 1964. Reprinted by Dover, New York, 1972.

    [2] S. Bernstein, Sur un th´eor`eme de g´eom´etrie et son application aux d´eriv´ees partielles du type elliptique. Comm. Soc. Math. de Kharkov (2)15,(1915–1917), 38–45. German translation: Math. Z. 26 (1927), 551–558.

    [3] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem. Inv. Math. 7 (1969), 243–268.

    [4] R. Courant und D. Hilbert, Methoden der Mathematischen Physik. Band 1 und Band 2. Springer-Verlag, Berlin, 1968. English translation: Methods of Mathematical Physics. Vol. 1 and Vol. 2, Wiley-Interscience, 1962.

    [5] L. C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, AMS, Providence, 1991.

    [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992.

    [7] R. Finn, Equilibrium Capillary Surfaces. Grundlehren, Vol. 284, Springer-Verlag, New York, 1986.

    [8] P. R. Garabedian, Partial Differential Equations. Chelsia Publishing Company, New York, 1986.

    [9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren, Vol. 224, Springer-Verlag, Berlin, 1983. 201

    [10] F. John, Partial Differential Equations. Springer-Verlag, New York,1982.

    [11] K. K¨onigsberger, Analysis 2. Springer-Verlag, Berlin, 1993.

    [12] L. D. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen Physik.Vol. 1., Akademie-Verlag, Berlin, 1964. German translation from Russian. English translation: Course of Theoretical Physics. Vol. 1, Pergamon Press, Oxford, 1976.

    [13] R. Leis, Vorlesungen ¨uber partielle Differentialgleichungen zweiter Ordnung. B. I.-Hochschultaschenb¨ucher 165/165a, Mannheim, 1967.

    [14] J.-L. Lions and E. Magenes, Probl´emes aux limites non homog´enes et applications. Dunod, Paris, 1968.

    [15] E. Miersemann, Kapillarfl¨achen. Ber. Verh. S¨achs. Akad. Wiss. Leipzig, Math.-Natur. Kl. 130 (2008), Heft 4, S. Hirzel, Leipzig, 2008.

    [16] Z. Nehari, Conformal Mapping. Reprinted by Dover, New York, 1975.

    [17] I. G. Petrowski, Vorlesungen ¨uber Partielle Differentialgleichungen. Teubner, Leipzig, 1955. Translation from Russian. Englisch translation: Lectures on Partial Differential Equations. Wiley-Interscience, 1954.

    [18] H. Sagan, Introduction to the Calculus of Variations. Dover, New York, 1992.

    [19] J. Simons, Minimal varieties in riemannian manifolds. Ann. of Math(2) 88 (1968), 62–105.

    [20] W. I. Smirnow, Lehrgang der H¨oheren Mathematik., Teil II. VEB Verlag der Wiss., Berlin, 1975. Translation from Russian. English translation: Course of Higher Mathematics, Vol. 2., Elsevier, 1964.

    [21] W. I. Smirnow, Lehrgang der H¨oheren Mathematik., Teil IV. VEB Verlag der Wiss., Berlin, 1975. Translation from Russian. English translation: Course of Higher Mathematics, Vol. 4., Elsevier, 1964.

    [22] A. Sommerfeld, Partielle Differentialgleichungen. Geest & Portig, Leipzig, 1954.

    [23] W. A. Strauss, Partial Differential equations. An Introduction. Second edition, Wiley-Interscience, 2008. German translation: Partielle Differentialgleichungen. Vieweg, 1995.

    [24] M. E. Taylor, Pseudodifferential operators. Princeton, New Jersey, 1981.

    [25] G. N.Watson, A treatise on the Theory of Bessel Functions. Cambridge, 1952.

    [26] P.Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial Derivatives, A Student Introduction. Cambridge University Press, 1996.

    [27] K. Yosida, Functional Analysis. Grundlehren, Vol. 123, Springer-Verlag, Berlin, 1965.