Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

4.3: Periodic Functions

  • Page ID
    8355
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We first need to define a periodic function. A function is called periodic with period \(p\) if \(f(x+p)=f(x)\), for all \(x\), even if \(f\) is not defined everywhere. A simple example is the function \(f(x)=\sin(bx)\) which is periodic with period \((2π)∕b\). Of course it is also periodic with periodic \((4π)∕b\). In general a function with period \(p\) is periodic with period 2pchar3B.png3pchar3B.png…. This can easily be seen using the definition of periodicity, which subtracts p from the argument

    \[ f(x+3p) = f(x+2p) = f(x+p) = f(x).\]

    The smallest positive value of p for which f is periodic is called the (primitive) period of f.

    Exercise \(\PageIndex{1}\)

    What is the primitive period of \(\sin(4x)\)?

    Answer

    \(\frac{π}{2}\).