Skip to main content
Mathematics LibreTexts

12.4E: Laplace's Equation in Polar Coordinates (Exercises)

  • Page ID
    18287
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q12.4.1

    1. Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad -\pi\le\theta<\pi,\\[4pt] u(\rho_0,\theta)=f(\theta),\quad u(\rho,\theta)=0,\quad -\pi\le\theta<\pi, \end{array}\nonumber \]

    where \(0<\rho_0<\rho\).

    2. Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho_0,\theta)=0,\quad u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u(r,0)=0,\quad u(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\nonumber \]

    where \(0<\gamma<2\pi\) and \(0<\rho_0<\rho\).

    3. Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho_0,\theta)=0,\quad u_r(\rho,\theta)=g(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\nonumber \]

    where \(0<\gamma<2\pi\) and \(0<\rho_0<\rho\).

    4. Define the bounded formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u(r,\gamma)=0,\quad 0<r<\rho, \end{array}\nonumber \]

    where \(0<\gamma<2\pi\).

    5. Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u_r(\rho_0,\theta)=g(\theta),\quad u_r(\rho,\theta)=0,\quad 0\le\theta\le\gamma,\\[4pt] u(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\nonumber \]

    where \(0<\gamma<2\pi\) and \(0<\rho_0<\rho\).

    6. Define the bounded formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad 0<r<\rho, \end{array}\nonumber \]

    where \(0<\gamma<2\pi\).

    7. Show that the Neumann problem

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad -\pi\le\theta<\pi,\\[4pt] u_r(\rho,\theta)=f(\theta),\quad -\pi\le\theta<\pi \end{array}\nonumber \]

    has no bounded formal solution unless \(\int_{-\pi}^\pi f(\theta)\,d\theta=0\). In this case it has infinitely many solutions. Find those solutions.


    This page titled 12.4E: Laplace's Equation in Polar Coordinates (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.