# 12.4E: Laplace's Equation in Polar Coordinates (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Q12.4.1

1. Define the formal solution of

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad -\pi\le\theta<\pi,\\[4pt] u(\rho_0,\theta)=f(\theta),\quad u(\rho,\theta)=0,\quad -\pi\le\theta<\pi, \end{array}\nonumber$

where $$0<\rho_0<\rho$$.

2. Define the formal solution of

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho_0,\theta)=0,\quad u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u(r,0)=0,\quad u(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\nonumber$

where $$0<\gamma<2\pi$$ and $$0<\rho_0<\rho$$.

3. Define the formal solution of

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho_0,\theta)=0,\quad u_r(\rho,\theta)=g(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\nonumber$

where $$0<\gamma<2\pi$$ and $$0<\rho_0<\rho$$.

4. Define the bounded formal solution of

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u(r,\gamma)=0,\quad 0<r<\rho, \end{array}\nonumber$

where $$0<\gamma<2\pi$$.

5. Define the formal solution of

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u_r(\rho_0,\theta)=g(\theta),\quad u_r(\rho,\theta)=0,\quad 0\le\theta\le\gamma,\\[4pt] u(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\nonumber$

where $$0<\gamma<2\pi$$ and $$0<\rho_0<\rho$$.

6. Define the bounded formal solution of

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad 0<r<\rho, \end{array}\nonumber$

where $$0<\gamma<2\pi$$.

7. Show that the Neumann problem

$\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad -\pi\le\theta<\pi,\\[4pt] u_r(\rho,\theta)=f(\theta),\quad -\pi\le\theta<\pi \end{array}\nonumber$

has no bounded formal solution unless $$\int_{-\pi}^\pi f(\theta)\,d\theta=0$$. In this case it has infinitely many solutions. Find those solutions.

This page titled 12.4E: Laplace's Equation in Polar Coordinates (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.