Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

1.7: Angles

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Our next goal is to introduce angles and angle measures; after that, the statement “we can measure angles” will become rigorous; see (iii) on Section 1.1.

    An ordered pair of half-lines that start at the same point is called an angle. The angle \(AOB\) (also denoted by \(\angle AOB\)) is the pair of half-lines \([OA)\) and \([OB)\). In this case the point \(O\) is called the vertex of the angle.

    Intuitively, the angle measure tells how much one has to rotate the first half-line counterclockwise, so it gets the position of the second half-line of the angle. The full turn is assumed to be \(2 \cdot \pi\); it corresponds to the angle measure in radians. (For a while you may think that \(\pi\) is a positive real number that measures the size of a half turn in certain units. Its concrete value \(\pi \approx 3.14\) will not be important for a long time.

    The angle measure of \(\angle AOB\) is denoted by \(\measuredangle AOB\); it is a real number in the interval \((-\pi, \pi]\).

    截屏2021-01-28 下午2.56.01.png

    The notations \(\angle AOB\) and \(\measuredangle AOB\) look similar; they also have close but different meanings which better not be confused. For example, the equality \(\angle AOB = \angle A'O'B'\) means that \([OA) = [O'A')\) and \([OB) = [O'B')\); in particular, \(O = O'\). On the other hand the equality \(\measuredangle AOB = \measuredangle A'O'B'\) means only equality of two real numbers; in this case \(O\) may be distinct from \(O'\).

    Here is the first property of angle measure which will become a part of the axiom.

    Given a half-line \([OA)\) and \(\alpha \in (-\pi, \pi]\) there is a unique half-line \([OB)\) such that \(\measuredangle AOB = \alpha\).