10.5: Graphs of the Trigonometric Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
In this section, we return to our discussion of the circular (trigonometric) functions as functions of real numbers and pick up where we left off in Sections
Graphs of the Cosine and Sine Functions
From Theorem
Periodic Functions
A function
We have already seen a family of periodic functions in Section
One last property of the functions
Note: Properties of the Cosine and Sine Functions
\index{cosine ! properties of} \index{sine ! properties of}
\begin{tabular}{ll}
\hspace{.3in}
& \
\hspace{.5in} -- has domain
\hspace{.5in} -- has range
\hspace{.5in} -- is continuous and smooth & \hspace{1in} -- is continuous and smooth \ [4pt]
\hspace{.5in} -- is even & \hspace{1in} -- is odd \ [4pt]
\hspace{.5in} -- has period
In the chart above, we followed the convention established in Section
\hspace{.5in} \begin{tabular}{m{2.7in}m{3in}}
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r||r|r|}
\hline
x & \cos(x) & (x,\cos(x)) \ \hline
0 & 1 & (0, 1) \ \hline
\frac{\pi}{4} & \frac{\sqrt{2}}{2} & \left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right) \ \hline
\frac{\pi}{2} & 0 & \left(\frac{\pi}{2}, 0\right) \ \hline
\frac{3\pi}{4} & -\frac{\sqrt{2}}{2} & \left(\frac{3\pi}{4}, -\frac{\sqrt{2}}{2}\right) \ \hline
\pi & -1 & (\pi, -1) \ \hline
\frac{5\pi}{4} & -\frac{\sqrt{2}}{2} & \left(\frac{5\pi}{4}, -\frac{\sqrt{2}}{2}\right) \ \hline
\frac{3\pi}{2} & 0 & \left(\frac{3\pi}{2}, 0 \right) \ \hline
\frac{7\pi}{4} & \frac{\sqrt{2}}{2} & \left(\frac{7\pi}{4}, \frac{\sqrt{2}}{2}\right) \ \hline
2\pi & 1 & (2\pi, 1) \ \hline
\end{array} \] \setlength{\extrarowheight}{0pt} &
\begin{mfpic}[25][50]{-1}{7}{-1.5}{1.5}
\point[3pt]{(0,1), (0.7854,0.7071), (1.5708,0), (2.3562,-0.7071), (3.1416, -1), (3.9270,-0.7071), (4.7124,0), (5.4978,0.7071), (6.2832,1)}
\axes
\tlabel[cc](7,-0.15){\scriptsize \(x$}
\tlabel[cc](0.25,1.5){\scriptsize \(y$}
\tcaption{The `fundamental cycle' of
\xmarks{0.7854, 1.5708, 2.3562, 3.1416, 3.9270, 4.7124,5.4978,6.2832 }
\ymarks{-1,1}
\tlpointsep{4pt}
\scriptsize
\axislabels {x}{{$\frac{\pi}{4}$} 0.7854, {$\frac{\pi}{2}$} 1.5708, {$\frac{3\pi}{4}$} 2.3562, {$\pi$} 3.1416, {$\frac{5\pi}{4}$} 3.9270, {$\frac{3\pi}{2}$} 4.7124, {$\frac{7\pi}{4}$} 5.4978, {$2\pi$} 6.2832}
\normalsize
\axislabels {y}{{\scriptsize \(-1$} -1, {\scriptsize \(1$} 1}
\function{0, 6.2832, 0.1}{cos(x)}
\end{mfpic} \
\end{tabular}
A few things about the graph above are worth mentioning. First, this graph represents only part of the graph of
We can plot the fundamental cycle of the graph of
As with the graph of
It is no accident that the graphs of
Recalling Section
Now that we know the basic shapes of the graphs of
Example
Graph one cycle of the following functions. State the period of each.
- \item
- \item
Solution
\item We set the argument of the cosine,
Next, we substitute each of these
One cycle is graphed on
- \item Proceeding as above, we set the argument of the sine,
, equal to each of our quarter marks and solve for .
We now find the corresponding
One cycle was graphed on the interval
The functions in Example
The \index{phase shift}\index{sinusoid ! phase shift}\textbf{phase shift} of the sinusoid is the horizontal shift experienced by the fundamental cycle.\index{sinusoid ! graph of} We have seen that a phase (horizontal) shift of
We note that in some scientific and engineering circles, the quantity
The proof of Theorem
so that
We find
Example
Below is the graph of one complete cycle of a sinusoid
\begin{center}
\begin{mfpic}[25]{-2}{6}{-3}{4}
\point[3pt]{(-1,2.5), (0.5,0.5), (2,-1.5), (3.5,0.5), (5,2.5)}
\tlabel(-2.25,2.35){\tiny \(\left(-1,\frac{5}{2}\right)$}
\tlabel(0.75,0.35){\tiny \(\left(\frac{1}{2},\frac{1}{2}\right)$}
\tlabel[cc](2,-2){\tiny \(\left(2,-\frac{3}{2}\right)$}
\tlabel(3.75,0.35){\tiny \(\left(\frac{7}{2},\frac{1}{2}\right)$}
\tlabel(5.25,2.35){\tiny \(\left(5,\frac{5}{2}\right)$}
\axes
\tlabel[cc](6,-0.25){\scriptsize \(x$}
\tlabel[cc](0.25,4){\scriptsize \(y$}
\tcaption{One cycle of
\xmarks{-1,1,2,3,4,5}
\ymarks{-2,-1,1,2,3}
\tlpointsep{4pt}
\axislabels {x}{{\tiny \(-1 \hspace{7pt}$} -1, {\tiny \(1$} 1, {\tiny \(2$} 2, {\tiny \(3$} 3, {\tiny \(4$} 4, {\tiny \(5$} 5}
\axislabels {y}{ {\tiny \(-2$} -2,{\tiny \(-1$} -1, {\tiny \(1$} 1, {\tiny \(2$} 2, {\tiny \(3$} 3}
\function{-1, 5, 0.1}{2*cos(3.14159265*(x+1)/3)+0.5}
\end{mfpic}
\end{center}
\begin{enumerate}
- \item Find a cosine function whose graph matches the graph of
. - \item Find a sine function whose graph matches the graph of
.
Solution
\begin{enumerate}
- \item We fit the data to a function of the form
. Since one cycle is graphed over the interval , its period is . According to Theorem , , so that . Next, we see that the phase shift is , so we have , or . To find the amplitude, note that the range of the sinusoid is . As a result, the amplitude Finally, to determine the vertical shift, we average the endpoints of the range to find . Our final answer is . - \item Most of the work to fit the data to a function of the form
is done. The period, amplitude and vertical shift are the same as before with , and . The trickier part is finding the phase shift. To that end, we imagine extending the graph of the given sinusoid as in the figure below so that we can identify a cycle beginning at . Taking the phase shift to be , we get , or . Hence, our answer is .
\begin{center}
\begin{mfpic}[25]{-2}{11}{-3}{4}
\point[3pt]{(3.5,0.5), (5,2.5), (6.5, 0.5), (8, -1.5), (9.5,0.5)}
\tlabel(3.75,0.35){\tiny \(\left(\frac{7}{2},\frac{1}{2}\right)$}
\tlabel[cc](5,2.75){\tiny \(\left(5,\frac{5}{2}\right)$}
\tlabel(6.75,0.35){\tiny \(\left(\frac{13}{2},\frac{1}{2}\right)$}
\tlabel[cc](8,-2){\tiny \(\left(8,-\frac{3}{2}\right)$}
\tlabel(9.75,0.35){\tiny \(\left(\frac{19}{2},\frac{5}{2}\right)$}
\axes
\tlabel[cc](11,-0.25){\scriptsize \(x$}
\tlabel[cc](0.25,4){\scriptsize \(y$}
\tcaption{Extending the graph of
\xmarks{-1,1,2,3,4,5,6,7,8,9,10}
\ymarks{-2,-1,1,2,3}
\tlpointsep{4pt}
\axislabels {x}{{\tiny \(-1 \hspace{7pt}$} -1, {\tiny \(1$} 1, {\tiny \(2$} 2, {\tiny \(3$} 3, {\tiny \(4$} 4, {\tiny \(5$} 5, {\tiny \(6$} 6, {\tiny \(7$} 7, {\tiny \(8$} 8, {\tiny \(9$} 9, {\tiny \(10$} 10}
\axislabels {y}{ {\tiny \(-2$} -2,{\tiny \(-1$} -1, {\tiny \(1$} 1, {\tiny \(2$} 2, {\tiny \(3$} 3}
\dotted \function{-1, 3.5, 0.1}{2*cos(3.14159265*(x+1)/3)+0.5}
\function{3.5, 9.5, 0.1}{2*cos(3.14159265*(x+1)/3)+0.5}
\end{mfpic}
\end{center}
\vspace{-.2in}
\qed
Note that each of the answers given in Example
Example
Consider the function
- \item in the form
for \(\omega > 0$ - \item in the form
for \(\omega > 0$
Check your answers analytically using identities and graphically using a calculator.
Solution
- \item The key to this problem is to use the expanded forms of the sinusoid formulas and match up corresponding coefficients. Equating
with the expanded form of , we get
It should be clear that we can take
To determine
\item Proceeding as before, we equate
Once again, we may take
We equate\footnote{Be careful here!} the coefficients of
\begin{center}
\begin{tabular}{cc}
\includegraphics[width=2in]{./IntroTrigGraphics/TrigGraphs01.jpg} &
\hspace{0.75in} \includegraphics[width=2in]{./IntroTrigGraphics/TrigGraphs02.jpg} \
\end{tabular}
\end{center}
\qed
It is important to note that in order for the technique presented in Example
Graphs of the Secant and Cosecant Functions
We now turn our attention to graphing
As one would expect, to graph
Once again, our domain and range work in Section
Note that, on the intervals between the vertical asymptotes, both
Properties of the Secant and Cosecant Functions
- The function
- has domain
- has range
- is continuous and smooth on its domain
- is even
- has period
- The function
- has domain
- has range
- is continuous and smooth on its domain
- is odd
- has period
In the next example, we discuss graphing more general secant and cosecant curves.
Example
Graph one cycle of the following functions. State the period of each.
- \(f(x) = 1 - 2 \sec(2x)$
- \(g(x) = \dfrac{\csc(\pi - \pi x) - 5}{3}$
Solution
- \item To graph
, we follow the same procedure as in Example . First, we set the argument of secant, , equal to the `quarter marks' , , , and and solve for .
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r|r|r|}
\hline
a & 2x = a & x \ \hline
0 & 2x = 0 & 0 \ \hline
\frac{\pi}{2} & 2x = \frac{\pi}{2} & \frac{\pi}{4} \ \hline
\pi & 2x = \pi & \frac{\pi}{2} \ \hline
\frac{3\pi}{2} & 2x = \frac{3\pi}{2} & \frac{3\pi}{4} \ \hline
2\pi & 2x = 2\pi & \pi \ \hline
\end{array} \]
\setlength{\extrarowheight}{0pt}
Next, we substitute these
\hspace{.25in} \begin{tabular}{m{2.7in}m{3in}}
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r||r|r|}
\hline
x & f(x) & (x,f(x)) \ \hline
0 & - 1 & (0,-1) \ \hline
\frac{\pi}{4} & \text{undefined} & \ \hline
\frac{\pi}{2} & 3 & \left(\frac{\pi}{2}, 3 \right) \ \hline
\frac{3\pi}{4} & \text{undefined} & \ \hline
\pi & -1 & (\pi, -1) \ \hline
\end{array} \] \setlength{\extrarowheight}{0pt} &
\begin{mfpic}[27][9]{-1}{4}{-7}{9}
\point[3pt]{(0,-1), (1.5708,3), (3.1416, -1)}
\axes
\tlabel[cc](4,-0.3){\scriptsize \(x$}
\tlabel[cc](0.25,9){\scriptsize \(y$}
\tcaption{One cycle of
\xmarks{0.7854, 1.5708, 2.3562, 3.1416}
\ymarks{-1,1,2,3}
\tlpointsep{4pt}
\scriptsize
\axislabels {x}{{$\frac{\pi}{4}$} 0.7854, {$\frac{\pi}{2}$} 1.5708, {$\frac{3\pi}{4}$} 2.3562, {$\pi$} 3.1416}
\normalsize
\axislabels {y}{{\scriptsize \(-1$} -1, {\scriptsize \(1$} 1, {\scriptsize \(2$} 2, {\scriptsize \(3$} 3}
\dotted \function{0, 3.1416, 0.1}{1 - 2*cos(2*x)}
\dashed \polyline{(0.7854, -7), (0.7854, 9)}
\dashed \polyline{(2.3562, -7), (2.3562, 9)}
\arrow \function{0, 0.6590, 0.1}{1-2/cos(2*x)}
\arrow \reverse \arrow \function{0.9118, 2.230, 0.1}{1-2/cos(2*x)}
\arrow \reverse \function{2.4826, 3.14, 0.1}{1-2/cos(2*x)}
\end{mfpic} \
\end{tabular}
\item Proceeding as before, we set the argument of cosecant in
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r|r|r|}
\hline
a & \pi - \pi x = a & x \ \hline
0 & \pi - \pi x = 0 & 1 \ \hline
\frac{\pi}{2} & \pi - \pi x = \frac{\pi}{2} & \frac{1}{2} \ \hline
\pi & \pi - \pi x = \pi & 0 \ \hline
\frac{3\pi}{2} & \pi - \pi x = \frac{3\pi}{2} & -\frac{1}{2} \ \hline
2\pi & \pi - \pi x = 2\pi & -1 \ \hline
\end{array} \]
\setlength{\extrarowheight}{0pt}
Substituting these
\hspace{.25in} \begin{tabular}{m{2.7in}m{3in}}
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r||r|r|}
\hline
x & g(x) & (x,g(x)) \ \hline
1 & \text{undefined} & \ \hline
\frac{1}{2} & -\frac{4}{3} & \left(\frac{1}{2}, -\frac{4}{3} \right) \ \hline
0 & \text{undefined} & \ \hline
-\frac{1}{2} & -2 & \left(-\frac{1}{2}, -2\right) \ \hline
-1 & \text{undefined} & \ \hline
\end{array} \] \setlength{\extrarowheight}{0pt} &
\begin{mfpic}[30]{-2}{2}{-3}{0.5}
\point[3pt]{(0.5,-1.3333), (-0.5, -2)}
\axes
\tlabel[cc](2,-0.3){\scriptsize \(x$}
\tlabel[cc](0.25,0.5){\scriptsize \(y$}
\tcaption{One cycle of
\xmarks{-1, -0.5, 0.5, 1}
\ymarks{-2,-1}
\tlpointsep{4pt}
\axislabels {x}{{\scriptsize \(-1 \hspace{7pt}$} -1, {\scriptsize \(-\frac{1}{2} \hspace{7pt}$} -0.5, {\scriptsize \(\frac{1}{2}$} 0.5, {\scriptsize \(1$} 1}
\axislabels {y}{{\scriptsize \(-2$} -2, {\scriptsize \(-1$} -1}
\dotted \function{-1, 1, 0.1}{(sin(3.14159 - 3.14159*x)-5)/3}
\dashed \polyline{(-1, -3), (-1, -0.5)}
\dashed \polyline{(1, -3), (1,-0.5)}
\arrow \reverse \arrow \function{0.9196, 0.08040, -0.1}{((1/sin(3.14159 - 3.14159*x))-5)/3}
\arrow \reverse \arrow \function{-0.08043, -0.9196, 0.1}{((1/sin(3.14159 - 3.14159*x))-5)/3}
\end{mfpic} \
\end{tabular}
Before moving on, we note that it is possible to speak of the period, phase shift and vertical shift of secant and cosecant graphs and use even/odd identities to put them in a form similar to the sinusoid forms mentioned in Theorem
Graphs of the Tangent and Cotangent Functions
Finally, we turn our attention to the graphs of the tangent and cotangent functions. When constructing a table of values for the tangent function, we see that
From the graph, it appears as if the tangent function is periodic with period
which tells us the period of
It should be no surprise that
\hspace{.5in} \begin{tabular}{m{2.7in}m{3in}}
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r||r|r|}
\hline
x & \cot(x) & (x,\cot(x)) \ \hline
0 & \text{undefined} & \ \hline
\frac{\pi}{4} & 1 & \left(\frac{\pi}{4},1 \right) \ \hline
\frac{\pi}{2} & 0 & \left(\frac{\pi}{2},0 \right) \ \hline
\frac{3\pi}{4} & -1 & \left(\frac{3\pi}{4}, -1\right) \ \hline
\pi & \text{undefined} & \ \hline
\frac{5\pi}{4} & 1 & \left(\frac{5\pi}{4}, 1 \right) \ \hline
\frac{3\pi}{2} & 0 & \left(\frac{3\pi}{2}, 0 \right) \ \hline
\frac{7\pi}{4} & -1 & \left(\frac{7\pi}{4}, -1 \right) \ \hline
2\pi & \text{undefined} & \ \hline
\end{array} \] \setlength{\extrarowheight}{0pt} &
\begin{mfpic}[25]{-1}{7}{-4}{4.25}
\point[3pt]{ (0.7854,1), (1.5708,0), (2.3562,-1), (3.9270,1), (4.7124,0), (5.4978,-1)}
\dashed \polyline{(3.1416,-4), (3.1416,4)}
\dashed \polyline{(6.2832,-4), (6.2832,4)}
\axes
\tlabel[cc](7,-0.25){\scriptsize \(x$}
\tlabel[cc](0.25,4.25){\scriptsize \(y$}
\tcaption{The graph of
\xmarks{0.7854, 1.5708, 2.3562, 3.1416, 3.9270, 4.7124,5.4978,6.2832 }
\ymarks{-1,1}
\tlpointsep{4pt}
\scriptsize
\axislabels {x}{{$\frac{\pi}{4}$} 0.7854, {$\frac{\pi}{2}$} 1.5708, {$\frac{3\pi}{4}$} 2.3562, {$\pi$} 3.1416, {$\frac{5\pi}{4}$} 3.9270, {$\frac{3\pi}{2}$} 4.7124, {$\frac{7\pi}{4}$} 5.4978, {$2\pi$} 6.2832}
\axislabels {y}{{\)-1$} -1, {$1$} 1}
\normalsize
\arrow \reverse \arrow \function{0.2450, 2.8966, 0.1}{cot(x)}
\arrow \reverse \arrow \function{3.3865, 6.0382,0.1}{cot(x)}
\end{mfpic} \
\end{tabular}
From these data, it clearly appears as if the period of
The properties of the tangent and cotangent functions are summarized below. As with Theorem
Properties of the Tangent and Cotangent Functions
\item The function \(J(x) = \tan(x)$
- \item has domain
- \item has range
- \item is continuous and smooth on its domain
- \item is odd
- \item has period
The function
- \item has domain
- \item has range
- \item is continuous and smooth on its domain
- \item is odd
- \item has period
Example
Graph one cycle of the following functions. Find the period.
- \item
. - \item
.
Solution
- \item We proceed as we have in all of the previous graphing examples by setting the argument of tangent in
, namely , equal to each of the `quarter marks' , , , and , and solving for .
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r|r|r|}
\hline
a & \frac{x}{2} = a & x \ \hline
-\frac{\pi}{2} & \frac{x}{2} = -\frac{\pi}{2} & -\pi \ \hline
-\frac{\pi}{4} &\frac{x}{2} = -\frac{\pi}{4} & - \frac{\pi}{2} \ \hline
0 & \frac{x}{2} = 0 & 0 \ \hline
\frac{\pi}{4} & \frac{x}{2} = \frac{\pi}{4} & \frac{\pi}{2} \ \hline
\frac{\pi}{2} & \frac{x}{2} = \frac{\pi}{2} & \pi \ \hline
\end{array} \]
\setlength{\extrarowheight}{0pt}
Substituting these
\hspace{.25in} \begin{tabular}{m{2.7in}m{3in}}
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r||r|r|}
\hline
x & f(x) & (x,f(x)) \ \hline
-\pi & \text{undefined} & \ \hline
-\frac{\pi}{2} & 2 & \left(-\frac{\pi}{2}, 2 \right) \ \hline
0 & 1 & (0,1) \ \hline
\frac{\pi}{2} & 0 & \left(\frac{\pi}{2}, 0 \right) \ \hline
\pi & \text{undefined} & \ \hline
\end{array} \] \setlength{\extrarowheight}{0pt} &
\begin{mfpic}[20]{-4}{4}{-3}{5}
\point[3pt]{(-1.5708,2),(0,1), (1.5708,0)}
\axes
\tlabel[cc](4,-0.3){\scriptsize \(x$}
\tlabel[cc](0.25,5){\scriptsize \(y$}
\tcaption{One cycle of
\xmarks{ -3.1416, -1.5708, 1.5708, 3.1416}
\ymarks{-2,-1,1,2}
\tlpointsep{4pt}
\scriptsize
\axislabels {x}{{\)-\pi \hspace{7pt}$} -3.1416,{\)-\frac{\pi}{2} \hspace{7pt}$} -1.5708, {$\frac{\pi}{2}$} 1.5708,, {$\pi$} 3.1416}
\normalsize
\axislabels {y}{{\scriptsize \(-2$} -2,{\scriptsize \(-1$} -1, {\scriptsize \(1$} 1, {\scriptsize \(2$} 2}
\dashed \polyline{(-3.1416, -3), (-3.1416, 5)}
\dashed \polyline{(3.1416, -3), (3.1416, 5)}
\arrow \reverse \arrow \function{-2.6516, 2.6516, 0.1}{1-tan(0.5*x)}
\end{mfpic} \
\end{tabular}
We see that the period is
\item The `quarter marks' for the fundamental cycle of the cotangent curve are
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r|r|r|}
\hline
a & \frac{\pi}{2} x + \pi = a & x \ \hline
0 & \frac{\pi}{2} x + \pi = 0 & -2 \ \hline
\frac{\pi}{4} & \frac{\pi}{2} x + \pi = \frac{\pi}{4} & -\frac{3}{2} \ \hline
\frac{\pi}{2} & \frac{\pi}{2} x + \pi = \frac{\pi}{2} & -1 \ \hline
\frac{3\pi}{4} & \frac{\pi}{2} x + \pi =\frac{3\pi}{4} & -\frac{1}{2} \ \hline
\pi & \frac{\pi}{2} x + \pi = \pi & 0 \ \hline
\end{array} \]
\setlength{\extrarowheight}{0pt}
We now use these
\hspace{.25in} \begin{tabular}{m{2.7in}m{3in}}
\setlength{\extrarowheight}{2pt}
\[ \begin{array}{|r||r|r|}
\hline
x & g(x) & (x,g(x)) \ \hline
-2 & \text{undefined} & \ \hline
-\frac{3}{2} & 3 & \left(-\frac{3}{2}, 3 \right) \ \hline
-1 & 1 & (-1,1) \ \hline
-\frac{1}{2} & -1 & \left(-\frac{1}{2}, -1 \right) \ \hline
0 & \text{undefined} & \ \hline
\end{array} \] \setlength{\extrarowheight}{0pt} &
\begin{mfpic}[30][20]{-3}{1}{-2}{4}
\point[3pt]{(-1.5,3),(-1,1), (-0.5,-1)}
\axes
\tlabel[cc](1,-0.3){\scriptsize \(x$}
\tlabel[cc](0.25,4){\scriptsize \(y$}
\tcaption{\scriptsize One cycle of
\xmarks{ -2, -1}
\ymarks{-1,1,2,3}
\tlpointsep{4pt}
\axislabels {x}{{\scriptsize \(-2 \hspace{7pt}$} -2,{\scriptsize \(-1 \hspace{7pt}$} -1}
\axislabels {y}{{\scriptsize \(-1$} -1,{\scriptsize \(1$} 1, {\scriptsize \(2$} 2, {\scriptsize \(3$} 3}
\dashed \polyline{(-2, -2), (-2, 4)}
\arrow \reverse \arrow \function{-1.62566, -0.3743, 0.1}{1+2*cot((1.5708*x)+ 3.1416)}
\end{mfpic} \
\end{tabular}
We find the period to be
\end{enumerate}
\end{ex}
As with the secant and cosecant functions, it is possible to extend the notion of period, phase shift and vertical shift to the tangent and cotangent functions as we did for the cosine and sine functions in Theorem

