5.4E: The Other Trigonometric Functions (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Section 5.4 Exercise
- If θ=π4, find exact values for sec(θ),csc(θ),tan(θ),cot(θ).
- If θ=7π4, find exact values for sec(θ),csc(θ),tan(θ),cot(θ).
- If θ=5π6, find exact values for sec(θ),csc(θ),tan(θ),cot(θ).
- If θ=π6, find exact values for sec(θ),csc(θ),tan(θ),cot(θ).
- If θ=2π3, find exact values for sec(θ),csc(θ),tan(θ),cot(θ).
- If θ=4π3, find exact values for sec(θ),csc(θ),tan(θ),cot(θ).
- Evaluate: a. sec(135∘) b. csc(210∘) c. tan(60∘) d. cot(225∘)
- Evaluate: a. sec(30∘) b. csc(315∘) c. tan(135∘) d. cot(150∘)
- If sin(θ)=34, and θ is in quadrant II, find cos(θ),sec(θ),csc(θ),tan(θ),cot(θ).
- If sin(θ)=27, and θ is in quadrant II, find cos(θ),sec(θ),csc(θ),tan(θ),cot(θ).
- If cos(θ)=−13, and θ is in quadrant III, find sin(θ),sec(θ),csc(θ),tan(θ),cot(θ).
- If cos(θ)=15, and θ is in quadrant I, find sin(θ),sec(θ),csc(θ),tan(θ),cot(θ).
- If tan(θ)=125, and 0≤θ<π2, find sin(θ),cos(θ),sec(θ),csc(θ),cot(θ).
- If tan(θ)=4, and 0≤θ<π2, find sin(θ),cos(θ),sec(θ),csc(θ),cot(θ).
- Use a calculator to find sine, cosine, and tangent of the following values:
a. 0.15
b. 4
c. 70∘
d. 283∘ - Use a calculator to find sine, cosine, and tangent of the following values:
a. 0.5
b. 5.2
c. 10∘
d. 195∘
Simplify each of the following to an expression involving a single trig function with no fractions.
17. csc(t)tan(t)
18. cos(t)csc(t)
19. sec(t)csc(t)
20. cot(t)csc(t)
21. sec(t)−cos(t)sin(t)
22. tan(t)sec(t)−cos(t)
23. 1+cot(t)1+tan(t)
24. 1+sin(t)1+csc(t)
25. sin2(t)+cos2(t)cos2(t)
26. 1−sin2(t)sin2(t)
Prove the identities.
27. sin2(θ)1+cos(θ)=1−cos(θ)
28. tan2(t)=1cos2(t)−1
29. sec(a)−cos(a)=sin(a)tan(a)
30. 1+tan2(b)tan2(b)=csc2(b)
31. csc2(x)−sin2(x)csc(x)+sin(x)=cos(x)cot(x)
32. sin(θ)−cos(θ)sec(θ)−csc(θ)=sin(θ)cos(θ)
33. csc2(α)−1csc2(α)−csc(α)=1+sin(α)
34. 1+cot(x)=cos(x)(sec(x)+csc(x))
35. 1+cos(u)sin(u)=sin(u)1−cos(u)
36. 2sec2(t)=1−sin(t)cos2(t)+11−sin(t)
37. sin4(γ)−cos4(γ)sin(γ)−cos(γ)=sin(γ)+cos(γ)
38. (1+cos(A))(1−cos(A))sin(A)=sin(A)
- Answer
-
1. sec(θ)=√2, csc(θ)=√2, tan(θ)=1, cot(θ)=1
3. sec(θ)=−2√33, csc(θ)=2, tan(θ)=−√33, cot(θ)=−√3
5. sec(θ)=−2, csc(θ)=2√33, tan(θ)=−√3, cot(θ)=−√33
7. a. sec(135∘)=−√2
b. csc(210∘)=−2
c. tan(60∘)=√3
d. cot(225∘)=19. cos(θ)=−√74, sec(θ)=−4√77, csc(θ)=43, tan(θ)=−3√77, cot(θ)=−√73
11. sin(θ)=−2√23, csc(θ)=−3√23, sec(θ)=−3, tan(θ)=2√2, cot(θ)=√24
13. sin(θ)=1213, cos(θ)=513, sec(θ)=135, csc(θ)=1312, cot(θ)=512
15. a. sin(0.15) = 0.1494 cos(0.15) = 0.9888 tan(0.15) = 0.1511
b. sin(4) = -0.7568 cos(4) = -0.6536 tan(4) = 1.1578
c. sin(70∘) = 0.9397 cos(70∘) = 0.3420 tan(70∘) = 2.7475
d. sin(283∘) = -0.9744 cos(283∘) = 0.2250 tan(283∘) = -4.331517. sec(t)
19. tan(t)
21. tan(t)
23. cot(t)
25. (sec(t))2