Skip to main content
Mathematics LibreTexts

11.3: Determinants and Cramer's Rule for 2 X 2 Matrices

  • Page ID
    108334
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    \(2 \times 2\) Determinants

    Let \(A\) be an \(n\times n\) matrix. That is, let \(A\) be a square matrix. The determinant of \(A\), denoted by \(\det \left( A\right)\) is a very important number which we will explore throughout this section.

    If \(A\) is a 2\(\times 2\) matrix, the determinant is given by the following formula.

    Definition \(\PageIndex{1}\) Determinant of a Two By Two Matrix

    Let \(A=\left[ \begin{array}{rr} a & b \\ c & d \end{array} \right] .\) Then \[\det \left( A\right) = ad-bc\nonumber \]

    The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus \[\det \left[ \begin{array}{rr} a & b \\ c & d \end{array} \right] =\left| \begin{array}{rr} a & b \\ c & d \end{array} \right| =ad - bc\nonumber \]

    The following is an example of finding the determinant of a \(2 \times 2\) matrix.

    Example \(\PageIndex{1}\)

    Find \(\det\left(A\right)\) for the matrix \(A = \left[ \begin{array}{rr} 2 & 4 \\ -1 & 6 \end{array} \right] .\)

    Solution

    From Definition \(\PageIndex{1}\), \[\det \left( A\right) = \left( 2\right) \left( 6\right) -\left( 4\right) \left( -1\right) = 12 + 4 = 16\nonumber \]

    Cramer’s Rule for a \(2\times 2\) Matrix

    Cramer's Rule gives a way to solve systems of equations using determinants. Although it may seem as though it is a more difficult way to solve systems of equations when the coefficients are constants, it is a much more efficient way to solve systems with functions as coefficients, which is predominantly what we see in differential equations. We omit the proof as it requires a significant amount of linear algebra.

    Theorem \(\PageIndex{1}\) Cramer's Rule for a \(2\times 2\) Matrix

    Consider the following system of equations: \[\begin{aligned}a_{11}x_1+a_{12}x_2&=b_1 \\ a_{21}x_1+a_{22}x_2&=b_2\end{aligned}\nonumber\]

    Let \(A=\left[ \begin{array}{rr} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]\) and b\(= \left[ \begin{array}{r} b_1 \\ b_2 \end{array} \right].\)

    Let \(A_1\) be the matrix where the first column of \(A\) has been replaced with b and \(A_2\) the matrix where the second column of \(A\) has been replaced with b.

    \[x_1= \frac{\det \left(A_{1}\right)}{\det \left(A\right)} = \frac{\left| \begin{array}{rrr} b_1 & a_{12} \\ b_2 & a_{22} \end{array} \right| }{\left| \begin{array}{rrr} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| }\nonumber\] and \[x_2= \frac{\det \left(A_{2}\right)}{\det \left(A\right)} = \frac{\left| \begin{array}{rrr} a_{11} & b_1 \\ a_{21} & b_2 \end{array} \right| }{\left| \begin{array}{rrr} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| }\nonumber\]

    Example \(\PageIndex{2}\)

    Use Cramer's Rule to solve

    \[\begin{aligned}3x_1+5x_2&=19 \\ 7x_1-4x_2&=13\end{aligned}\nonumber\]

    Solution

    We have Let \(A=\left[ \begin{array}{rr} 3 & 5 \\ 7 & -4 \end{array} \right]\) and b\(= \left[ \begin{array}{r} 19 \\ 13 \end{array} \right].\nonumber\)

    \[x_1= \frac{\det \left(A_{1}\right)}{\det \left(A\right)} = \frac{\left| \begin{array}{rrr} 19 & 5 \\ 13 & -4 \end{array} \right| }{\left| \begin{array}{rrr} 3 & 5 \\ 7 & -4 \end{array} \right| }={-141\over -47}=3\nonumber\] and \[x_2= \frac{\det \left(A_{2}\right)}{\det \left(A\right)}=\frac{\left| \begin{array}{rrr} 3 & 19 \\ 7 & 13 \end{array} \right| }{ \left| \begin{array}{rrr} 3 & 5 \\ 7 & -4 \end{array} \right|}={-94\over -47}=2\nonumber\]


    This page titled 11.3: Determinants and Cramer's Rule for 2 X 2 Matrices is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform.