Skip to main content
Mathematics LibreTexts

11.4.1: Determinants and Cramer's Rule for n x n Matrices (Exercises)

  • Page ID
    108898
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Let \(A=\left[\begin{array}{ccc}1&2&4\\0&1&3\\-2&5&1\end{array}\right]\). Find the following.

    1. \(minor(A)_{11}\)
    2. \(minor(A)_{21}\)
    3. \(minor(A)_{32}\)
    4. \(C_{11}\)
    5. \(C_{21}\)
    6. \(C_{32}\)

    2. Find the determinants of the following matrices.

    1. \(\left[\begin{array}{ccc}1&2&3\\3&2&2\\0&9&8\end{array}\right]\)
    2. \(\left[\begin{array}{ccc}4&3&2\\1&7&8\\3&-9&3\end{array}\right]\)
    3. \(\left[\begin{array}{cccc}1&2&3&2\\1&3&2&3\\4&1&5&0\\1&2&1&2\end{array}\right]\)
    Answer
    1. The answer is \(31\).
    2. The answer is \(375\).
    3. The answer is \(-2\).

    3. Find the following determinant by expanding along the first row and second column. \[\left|\begin{array}{ccc}1&2&1\\2&1&3\\2&1&1\end{array}\right|\nonumber\]

    Answer

    \[\left|\begin{array}{ccc}1&2&1\\2&1&3\\2&1&1\end{array}\right|=6\nonumber\]

    4. Find the following determinant by expanding along the first column and third row. \[\left|\begin{array}{ccc}1&2&1\\1&0&1\\2&1&1\end{array}\right|\nonumber\]

    Answer

    \[\left|\begin{array}{ccc}1&2&1\\1&0&1\\2&1&1\end{array}\right|=2\nonumber\]

    5. Find the following determinant by expanding along the second row and first column. \[\left|\begin{array}{ccc}1&2&1\\2&1&3\\2&1&1\end{array}\right|\nonumber\]

    Answer

    \[\left|\begin{array}{ccc}1&2&1\\2&1&3\\2&1&1\end{array}\right|=6\nonumber\]

    6. Compute the determinant by cofactor expansion. Pick the easiest row or column to use. \[\left|\begin{array}{cccc}1&0&0&1\\2&1&1&0\\0&0&0&2\\2&1&3&1\end{array}\right|\nonumber\]

    Answer

    \[\left|\begin{array}{cccc}1&0&0&1\\2&1&1&0\\0&0&0&2\\2&1&3&1\end{array}\right|=-4\nonumber\]

    7. Find the determinant of the following matrices.

    1. \(A=\left[\begin{array}{cc}1&-34\\0&2\end{array}\right]\)
    2. \(A=\left[\begin{array}{ccc}4&3&14\\0&-2&0\\0&0&5\end{array}\right]\)
    3. \(A=\left[\begin{array}{cccc}2&3&15&0\\0&4&1&7\\0&0&-3&5\\0&0&0&1\end{array}\right]\)

    8. Use Cramer’s rule to find the solution to \[\begin{array}{c}x_1+2x_2+x_3=1 \\ 2x_1-x_2-x_3=2 \\ x_1+x_3=1\end{array}\nonumber\]

    Answer

    Solution is: \([x_1 = 1, x_2 = 0,x_3 = 0]\). For example, \[y=\frac{\left|\begin{array}{ccc}1&1&1\\2&2&-1\\1&1&1\end{array}\right|}{\left|\begin{array}{ccc}1&2&1\\2&-1&-1\\1&0&1\end{array}\right|}=0\nonumber\]

    9. Use Cramer’s rule to find the solution to \[\begin{array}{c}x_1+x_2-2x_3=14 \\ 2x_1-x_2+x_3=0 \\ 6x_1+3x_2+4x_3=1\end{array}\nonumber\]

    10. Use Cramer’s rule to find the solution to \[\begin{array}{c}2x_1+x_2+x_3=4 \\ 10x_1-2x_2+2x_3=-1 \\ 6x_1-2x_2+4x_3=8\end{array}\nonumber\]


    This page titled 11.4.1: Determinants and Cramer's Rule for n x n Matrices (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.